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Abstract 

The aim of the present paper is to demonstrate how prosody 
information could be used to recognize Mandarin Chinese 
fluent speech and what the recognized results imply. By 
applying our hierarchical prosody framework for fluent 
speech [1, 2] that specifies boundary breaks and boundary 
information across phrases and group phrases into speech 
paragraphs, we were able to develop software that 
automatically segment speech flow by boundary breaks and 
label the boundaries systematically. That is, the recognized 
results are identified speech paragraphs and various levels of 
prosodic units within each such paragraph. These recognized 
prosodic units are not unrelated speech units but rather, sister 
constituents that entail higher-up syntactic as well semantic 
relationships that cumulatively make up speech paragraphs in 
fluent continuous speech. Note how this top-down approach 
differs from most bottom-up approaches. The former offers 
information from higher up linguistic association whereas the 
latter treats identified Chinese syllables as discrete unrelated 
units or lexical words at most, leaving structural information 
that combines these syllables into linguistically significant 
units unaddressed. We believe using top-down prosody 
information may very well offer new breaking ground in 
fluent speech recognition.  

1. Introduction 
Research on speech recognition of Mandarin Chinese has 
always adopted bottom-up approaches and geared towards 
recognizing syllables and tones and very little afterwards, and 
units of recognition have remained small [for example 3, 4 for 
more recent references]. The general consensus of choosing 
syllable as unit of speech recognition comes from two widely 
accepted misunderstandings. One is that Mandarin is a mono-
syllabic language since the orthography is syllable based, and 
two a syllable could be a lexical word. Incidentally syllable is 
also the unit of lexical tones. But in fact, both assumptions are 
at best over-simplifications. In speech form, as opposed to in 
writing, Mandarin is not mono-syllabic and lexical words are 
not necessarily units of fluent continuous speech. The bottom-
up approach itself is not altogether falsifiable since 
considerable success had been achieved over time. 
Nevertheless, what is misleading with the syllable-and-tone 
oriented approach is that firstly it is falsifiable to assume that 
all syllables in fluent Chinese speech are produced in full 
phonetic and tonal details, and secondly the approach 
somewhat reduces recognizing speech to recognizing mono- 
as well as poly-syllabic words only without addressing further 

structural (syntactic and/or semantic) information involved, 
and/or prosody information that is an inherent of speech. For 
example, recognizing all the syllables correctly in a phrase 
such as “下雨天留客天留我不留” without boundary (and in 
this case also prosodic) information would at best yield an 
ambiguous phrase with two possible readings while boundary 
information is required in speaking form to disambiguate them. 
“下雨--天留客--,天留--我不留.--” “Raining—heaven keeps 
visiting guests--, heaven keeps—I won’t” means ‘The rain 
may keep the visiting guests from leaving, but I the host won’t 
keep them’ whereas “下雨天 --,留客天 ,--留我不留 .--”  
“Rainy days—keep visiting guest days--, keep me not keep” 
means “Rainy days are days that keep your guest from leaving, 
so are you going to ask me (the guest) to stay or not?”  
Our earlier perceptual investigations of boundary breaks in 
fluent continuous speech have shown that speech units are 
almost never mono-syllabic, lexical words are often not 
speech units and boundaries between lexical words may not 
always exist. [5] Labeling results indicated that speaking units 
are mostly di- and tri-syllabic in slower speech (mean syllable 
duration 200msec). Furthermore, we have also been able to 
establish a system of boundary breaks across phrases with the 
pauses themselves and corresponding pre-boundary 
information. We therefore argue that boundaries are important 
prosodic information, they are hierarchical, and they are 
necessary components of fluent speech [6]. These boundary 
breaks are also indicators of higher up structural information 
that concatenates speech units into meaningful phrases and 
paragraphs. Together with prosodic units at various levels, 
cross-phrase templates and cadences can be derived from 
speech corpora that justify and predicts fluent speech prosody 
[2].  
The current hypothesis is if we apply what we have found in 
fluent speech prosody to speech recognition, we should be 
able to construct software that segment speech flow into 
speech units by boundary breaks, and label the breaks as 
specified by our prosody framework. Subsequently, the 
recognition results would be prosodic units that represent 
cross-phrase relationship instead of unrelated speech units. In 
the following sections, we will present our initial experiments 
to recognize fluent speech using boundary breaks and 
boundary information.  

2. Speech Data 
Mandarin Chinese speech data from Sinica COSPRO 
Database [7] were used. The speech data consisted of readings 
of 26 paragraphs (11592 syllables in total) of text ranging 
from 85 to 981 characters per paragraph by two speakers. 1 



female (F051P) and 1 male (M051P) radio announcers, both 
under 35 years of age, read the text at a normal speaking rate 
of 200 ms/syllable. Segmental identities were first 
automatically labeled using the HTK toolkit and SAMPA-T 
notation, then hand tagged by trained transcribers for 
perceived boundary breaks using the Sinica COSPRO Toolkit 
[7]. All labeling was also spot-checked by trained transcribers. 
Segmental intensities were first derived using an ESPS toolkit. 
Table 1 summarizes derived speech features of the two 
speakers. Figure 1 shows distribution of PPh (Prosodic Phrase) 
length by syllable numbers from the two speakers. 

 μDuration σDuration μIntensity σIntensity μPause σPause

F051P 200 65 1298 680 37 106
M051P 190 60 897 350 45 138

Table 1 Speech features in F051P and M051P 
 

 
Figure 1 Distribution of  PPh (Prosodic Phrase) Length in 

syllable numbers from  speakers  F051P and M051P 

3. Methods of Analysis 
We used normalized prosody information to build statistical 
models for each level of boundary break. Figure 2 shows 
prosody information based on Gaussian Mixture Model 
(GMM) to construct Break models. In this section, we will 
explain methods used in the system. Boundary break B1 
denotes normal syllabic boundary (SY), B2 Prosodic Word 
(PW) boundary, B3 Prosodic Phrase (PPh) boundary, B4 
Breath Group (BG) boundary and B5 Prosodic Phrase Group 
(BG) boundary [1, 2]. In other words, speech unites between 
two successively recognized B1’s would be a syllable,  
between two successive B2’s a PW, B3’s a PPh, B4’s a BG 
and B5’s a PG. Note that models were built for each boundary 
break. 

3.1.  

To eliminate the variation between the speakers, each set of 
data was normalized with the mean and standard deviation of 
the entire class. The rationale of normalization is that 
boundary breaks would affect both pre- and post-boundary 
speech signals, but most obviously in the last 3 pre-boundary 
syllables. Our normalization spans to 12-syllable phrases; 
phrases longer were considered as 12-syllable phrases 
whereby the last 3 pre-boundary syllables were normalized. 
Therefore, the normalization is as follows:  

Ynor(i) = (Y(i) - μY ) / σY 
Ynor = { Ynor(1), Ynor(2),... Ynor(n)} 

3.2. Hierarchical Regression Model 

A layered, hierarchical regression model corresponding to our 
prosody framework was built from bottom up, namely, the SY 
layer, the PW layer, the PPh layer, and the BG layer, to 
account for the respective as well as cumulative contribution 
of prosody information to the final output.  
 
Syllable Layer : 

   Ynor = Const + CCt + CVt + Ton 
                + PCt + PVt + PTt + FCt + FVt + FTt 
                + 2-way factors of each factor above 

+ 3-way factors of each syllable 
                + Delta 1 
 
PW Layer: 
   Delta 1 = f(PW length, PW sequence) + Delta 2 
 
PPh Layer: 
   Delta 2 = f(PPh length, PPh sequence) + Delta 3 
 
BG Layer: 
   Delta 3 = f(PPh IMF, PPh length, PPh sequence) 
                   + Delta 4 
We used the same linear regression technique to build models 
for three acoustic modules, namely, Duration, Pause and 
Intensity Modules.  Figure 3 shows Duration, Pause and 
Intensity patterns of different prosodic units for one speaker 
(F051P). Table 2 shows evaluations based on predictions of 
each prosody layer in duration, intensity and pause for both 
speakers (F051P and M051P). 
 

 
Figure 2 Schematic diagram of fluent speech recognition using 

prosody information where B’s denote different levels of 
boundary breaks.  

 
 
 

F051P SY PW PP BG 
T.R.E. 46% 44% 39% 36% Duration 

r 0.734 0.748 0.782 0.799 
T.R.E. 63% 62% 56% 54% Intensity 

r 0.611 0.613 0.662 0.682 
T.R.E. 58% 54% 40% 32% Pause 

r 0.649 0.681 0.799 0.827 
 

M051P SY PW PP BG 
T.R.E. 48% 44% 36% 33% Duration 

r 0.718 0.747 0.805 0.822 
T.R.E. 56% 55% 51% 48% Intensity 

r 0.666 0.669 0.701 0.718 
T.R.E. 50% 47% 34% 27% Pause 

r 0.707 0.731 0.835 0.858 
Table 2 Prediction Evaluations in F051P and M051P 
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Figure 3 Duration, Pause and Intensity patterns of different 
prosodic unit in speaker F051P  
X-axis: specific position with one syllable  
Y-axis: corresponding regression coefficient of one syllable at 
the specific position  
Row: Different linguistic levels and prediction    
Column: Feature pattern 

3.3. Gaussian Mixture Model 

According to the above hierarchical regression model, we 
calculated Duration, Pause and Intensity patterns of F051P 
and M051P. Due to space limit of the present paper we could 
only present derived acoustic patterns from one speaker F051P 
as shown in Figure 3. However, the distinction of normalized 
acoustic patterns between speakers F051P and M051P was not 
apparent.  
We used GMM to classify normalized prosody information. 
The GMM method has been widely used in the classification 
of speech recognition. We incorporated the results of linear 
regression of every prosodic layer, namely, the SY layer, PW 
layer, PPh layer, and BG layer, into GMM to analyze the 
speech data. Prosody information was trained to produce 
Break models, comprising B1, B2, B3, B4, and B5 model, by 
GMM. Figure 4 shows data dimension of GMM. Data 
dimension of GMM included NP(x), ND(x-1), ND(x), NI(x), 
NI(x+1), NF(x) and NF(x+1). 
NP(x): Normalized Pause before Beak. 
ND(x-1): Normalized Duration before Break. 
ND(x): Normalized Duration after Break. 
NI(x): Normalized Intensity before Break. 
NI(x+1): Normalized Intensity after Break. 
NF(x): Normalized Frequency before Break. 

NF(x+1): Normalized Frequency after Break. 

)( xNP )1( −xND )( xND )( xNI )1( +xNI )( xNF )1( +xNF

 Figure 4 Data Dimension of GMM 

4. Results and Discussion 
Results of inside and outside tests for F051P and M051P were 
presented and discussed below. 

4.1. Inside Test 

Results of both precision rate and recall rate from inside test 
were obtained from speakers F051P and M051P and listed in 
Table 3, where PB1 denotes the precision number of B1 and 
RB1 denotes the recall number of B1. For inside test, training 
data sets were chosen from all speech data. Overall 
recognition accuracy of F051P and M051P were 94.1% and 
94.8%, respectively. The predictions of boundary breaks were 
very good except for B2. However, the precision rate of 
F051P and M051P in B2 was the lowest, and the result 
indicated that B2’s were misjudged as B1’s in most errors.  

 

 
Table 3 Result of Inside Test in F051P and M051P 

 
One major reason why correctly recognizing PW boundary 
break B2 was less accurate could be that it is a lower-level 
boundary in the prosody hierarchy and may very well be 
speech signals with less significant information. Observations 
of speech data from our corpora showed that these boundaries 
are not at all likely to occur before or after any focus in the 
speech flow. In other words, B2 is a relatively less significant 
boundary break since no keyword would occur in its near 
neighborhood. So in spite of the relatively poor recognition 
rate, we have learned significant facts about fluent speech. 
When speech flows the signals are mixture of clearly and fully 
produced units such as keywords and/or focus and blurry 
signals such as rapid co-articulation where variations are to be 
expected. The question is: communication may very well be 
comprised largely from the focal points in the signals only and 
blurry portions could be skipped. We believe this notion 
merits further and future exploration. An immediate follow-up 
study would be to adjust weighting assignment of the models. 



Future investigations of the occurrence and function of 
keywords in speech flow, and future development of keyword 
spotting in recognition system would both be desirable 
directions to incorporate and integrate. 

4.2. Outside Test 

Results of both precision rate and recall rate from outside test 
were obtained from speakers F051P and M051P and listed in 
Table 4. For outside test, training and testing data set were 
chosen by randomly dividing 75% of the speech data for 
training and the remaining 25% for testing. Overall 
recognition accuracy of F051P and M051P were 61.1% and 
62.4%, respectively. 

 

 
Table4.  Result of Outside Test in F051P and M051P 

 
The results of recognition from outside test were not as 
satisfactory. Besides, the recognition accuracy of B2 and B4 
were very low for all Break levels. For B2 we believe our 
rationale for inside test as discussed in Section 4.1. also holds 
here for outside test. As for B4, analysis of the statistics of 
prosody information indicated that when there were 
insufficient training data, no significant difference in prosody 
information among Breaks could be derived. Take F051P for 
example, there was no significance difference in the duration 
of B3, B4 and B5; in addition, no significant difference was 
observed for the intensity in B4 and B5Based on the above the 
analysis. Future investigations would definitely include more 
speech data and more speakers.  

5. Conclusions 
In summary, results from the inside test is encouraging while 
the outside test suggests further improvement. However, we 
believe our initial investigation reported above at least showed 
a positive direction. Note that 1. we have shown that by 
systematically segmenting speech flow into prosodic units, our 
approach emphasized and captured the associative 
relationships between and among speech signals crucial to 
continuous speech. 2. We have shown how boundary breaks 
and boundary information could be essential to speech 
recognition. 3. We moved away from recognizing speech into 
phonetic units only, thereby suggesting how speech 
recognition could incorporate information expressed through 
prosody to further facilitate higher level structural information. 
4. We provide evidence as to how far look-ahead and forecast 
span in continuous speech by locating boundary breaks 
between speech paragraphs. 5. Our rationale also suggests the 
notion of weighting or a mixture of focus-and-blur that exists 
in both human speech communication and speech 
comprehension. It should be common knowledge that in 
human speech communication not all sounds are produced in 
full phonetic details; whereas in human speech comprehension 

not all phonetic details need to be processed fully, either. 
Whatever approach developed for speech recognition should 
benefit from addressing these facts and somehow capture them 
as human so effortless do. Our initial attempt shows a first 
step towards this direction. We believe the idea could be 
further integrated to and with any bottom-up approaches, and 
further applied to other languages as well. Immediate future 
directions will focus on testing feasible alternatives such as 
adjusting weight assignments of prosody information for every 
Break level, and looking for bottom-up recognition systems 
for possible integration. 
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