
Deriving disyllabic word variants from a Chinese conversational
speech corpus

Yi-Fen Liu
Graduate Institute of Information Systems and Applications, National Tsing Hua University, 101, Section 2,
Kuang-Fu Road, Hsinchu, 30013, Taiwan

Shu-Chuan Tsenga)

Institute of Linguistics, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan

Jyh-Shing Roger Jang
Department of Computer Science and Information Engineering, National Taiwan University, 1, Section 4,
Roosevelt Road, Taipei, 10617, Taiwan

(Received 30 October 2015; revised 8 June 2016; accepted 8 June 2016; published online 15 July
2016)

Motivated by the quasi-categorical reduced forms of disyllabic words produced in Chinese

conversational speech, a frequency-based selection procedure of typical pronunciation by disyllabic

word type and reduction degree is proposed in this paper. This variant-selection algorithm utilizes

techniques of free phone recognition and phonetic similarity score calculation to account for

Chinese syllable structure. Four reduction types are suggested by considering the presence of a

within-word syllable boundary: Citation form-like reduction, marginal segment deletion, nuclei

merger, and syllable merger. The results show that the most frequent reduction types for disyllabic

words in Chinese conversation are citation form-like reduction and syllable merger. In particular,

high-frequency disyllabic words preferentially take the extreme syllable-merger form. As shown in

the analysis, segmental reduction in Chinese disyllabic words is morphology-dependent. It is also

related to the prosodic position at which a disyllabic word is produced as well as the temporal

quality of the word. Finally, in the automatic speech recognition experiments, the performance was

improved by adding a small number of variants selected by the algorithm to the pronunciation

dictionary of the system.VC 2016 Acoustical Society of America.
[http://dx.doi.org/10.1121/1.4954745]

[JFL] Pages: 308–321

I. INTRODUCTION

In realistic speech communication, words are articulated

in sequence with a wide range of phonetic variability.

Regardless of slightly or extremely reduced pronunciation,

seemingly diverse word variants seldom cause problems in

understanding casual speech for humans. However, recog-

nizing reduced speech remains a challenging task for auto-

matic speech recognition (ASR) systems. Analyzing

phonetic variation in reduced speech not only is relevant in

human speech communication research (e.g., production

form and mental representation of spoken words), but also

strengthens the performance of ASR systems. Although

numerous statistical approaches (Akita and Kawahara, 2010;

Hofmann et al., 2010; Jyothi et al., 2013; Karanasou et al.,
2013; McGraw et al., 2013) have been adopted to handle

problems in pronunciation modeling, highly diverse word

variants that deviate from their citation form often lead to

severe performance deterioration. Knowledge on the cogni-

tive representation and processing of reduced spoken words

is necessary for both engineering applications and linguistic

research. Most importantly, to build an automatic system

that functions as humans do, understanding why and how

humans can connect diverse reduced word forms with their

canonical meaning so rapidly in casual speech is imperative.

Speech information is delivered more than merely by acous-

tic signals of speech; accordingly, this information is possi-

bly decoded by the specific language system that functions

in the users.

Specific reduced word forms are likely preferential, lead-

ing to such preferred forms being more closely connected

with the meaning than the other word forms. Pierrehumbert

(1994) similarly suggested that “linguistic competence”

consists of underlying principles that enable humans to use

language in a quasi-categorical manner. This notion of lin-

guistic competence implies that semantic meaning is con-

nected with “categorical” phonetic forms of spoken words.

More concretely in the exemplar model, the surface forms of

spoken words are stored as exemplars (Pierrehumbert, 1994).

Usage-based production frequency might be related to spe-

cific categorical phonetic forms that can be restored from the

acoustic correlates of the phonetic forms. In other words,

word production frequency and acoustic properties are likely

the two decisive factors enabling humans to construct a type

of system with representative word variants (Dilley and Pitt,

2007; Pitt et al., 2011). In the process of decoding acoustic

information to interpret semantic meaning in a givena)Electronic mail: tsengsc@gate.sinica.edu.tw
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language, the linguistic system that depends on individual

languages also plays a role in processing reduced word forms

such as in the morphological and phonological structure of

words.

In recent decades, efforts have been focused on strength-

ening ASR performance by embedding speech variability in

pronunciation modeling modules. The pronunciation diction-

ary in an ASR system, which connects the acoustic decoding

and linguistic interpretation of spoken words, is expanded by

including word variants in addition to the citation form.

Often, surface transcription obtained using automatic free

phone recognition is used for deriving pronunciation

variants, which are elicited by learning rules and deriving

parameters through various approaches such as decision

trees (Fosler-Lussier, 1999; Liu and Fung, 2004a), artificial

neural networks (Fukada et al., 1999; Chen and Hasegawa-

Johnson, 2004), and the conditional random field model

(Karanasou et al., 2013). More oriented toward linguistic

systems, word variants can also be derived from phonologi-

cal rules (Schuppler et al., 2011).
Concerning Chinese ASR systems, improvements have

been achieved by utilizing pure lexicon enhancement such

as using the pruning method (Tsai et al., 2007), acoustic
models allowing more tolerance (Liu and Fung, 2004b), or

both (Byrne et al., 2001; Liu and Fung, 2004a). Collectively,

various degrees of improvement have been achieved.

However, the extracted surface forms are not necessarily a

faithful reflection of the phonetic forms that speakers prefer

in speech communication. Another limitation caused by

implicit pronunciation modeling approaches is the possibility

of connecting word variants with the prosodic position and

context in which words are spoken, though these two factors

are closely related to the pronunciation of words (Torreira

and Ernestus, 2011; Hanique et al., 2013).
The central concern of this paper is identifying a formal

means of deriving typical word variants that, to a certain

degree, model common usages by humans and simultane-

ously assist system developers in selecting word variants

them appropriately. Thus, we propose a derivation algorithm

by employing an automatic usage-based approach with con-

siderations of language-dependent syllable structure and

reduction degree. Accordingly, we account for the three

aforementioned factors: acoustic properties, language

system, and usage. This paper also reports the results of

implementing our proposed algorithm on disyllabic words

that comprise most modern Chinese usages in both written

and spoken forms (Tseng, 2013a).

II. CHINESE DISYLLABIC WORD VARIANTS

Disyllabic words account for approximately 40% of the

overall word tokens and 60% of word types in the 42-h

Chinese Conversational Corpus (Tseng, 2013a). Only mono-

syllabic words outnumber disyllabic words in tokens,

because singular pronouns and many frequently used func-

tion words in Chinese, such as the structural particle 的 de
and past tense particle 了le, are monosyllabic. Disyllabic

words not only have high coverage in conversational use but

also play a critical role in the tradition of Chinese

phonology. Because of the lack of phonetic transcription sys-

tems in ancient China, a character is phonetically transcribed

by two already existing characters. In concrete terms, the to-

be-transcribed character inherits the onset from the first char-

acter syllable and the rhyme from the second character sylla-

ble. This manner of syllable merger not only functions as a

means of phonetic transcription, but also has some impact on

word morphology and the writing system. New phonetic forms

and characters can be invented by applying this two-syllable

merging rule. For instance, the phrase “rise up” ki (rise) lai
(hither) in Southern Min has a shortened form kiai in collo-

quial speech. In Mandarin, the function word 諸 zhū is the

merger of the two function words 之zh�i and 乎hū, which is an

example of syllable mergers influencing the writing system.

In a similar notion, Chinese phonologists have observed

this merging rule in many Chinese dialects, called the Edge-in

Theory (Chung, 1997; Hsu, 2003). Syllable mergers may be a

representative spoken word form, which is also referred to as

the coalescence of syllables. However, syllable mergers are in

no case the only form of a disyllabic word, because spoken

word reduction resembles a spectrum with varying degrees.

When reduction is viewed from the presence of the word-

internal syllable boundary, two syllables of a spoken disyl-

labic word can be uncontracted, contracted, or merged, form-

ing a type of categorical phonetic representation of reduced

spoken words. Our approach involved adopting the categori-

cal phonetic forms of spoken words, in principle conforming

to the notions of the exemplar model (Pierrehumbert, 1994)

and the results of syllable contraction (Tseng et al., 2013b). In
addition to reduction degree and word frequency, we also

considered the syllable structure of words as a key feature

affecting the final surface forms of spoken words.

A. Disyllabic words in conversational speech

The present study analyzed disyllabic word variants in the

8-h Mandarin Conversational Dialogue Corpus (MCDC8),

which is distributed by the Association for Computational

Linguistics and Chinese Language Processing (2016). Figure 1

shows a summary of the number of word tokens and types as

well as their proportion percentage in the MCDC8. The word

production frequency in the MCDC8 is similar to that reported

in a larger corpus (Tseng, 2013a). Thus, we directly used the

MCDC8 word frequency to represent the general use of words

in realistic speech communication.

In the MCDC8, the duration of ordinary syllables ranges

from 15 to 1110ms (mean, 173ms) and is equal to 5.78 syl-

lables per second, which is faster than the articulation rate of

news reporters in a Chinese Broadcast News corpus (Chien

and Huang, 2003). We ran the variant selection algorithm on

all disyllabic words in the MCDC8. For subsequent ASR

experiments, we divided the MCDC8 into three subsets.

Eighty percent of the speech data were randomly selected as

the training set (75 104 word tokens). The remaining 20% of

speech data were used as development (9046 word tokens)

and evaluation sets (9383 word tokens). That is, 90% of the

MCDC8 data were used for constructing a word-bigram lan-

guage model. The evaluation set was mainly used to assess
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the impact on ASR performance of adding variants selected

using our proposed method.

B. Reduced disyllabic words

Concerning the reduction degree of disyllabic words,

two factors are considered: the presence of an identifiable

within-word syllable boundary and segment deletion across

the syllable boundary (Tseng et al., 2013b). Phonologically
speaking, a Chinese syllable has the CGVN structure: an

optional onset consonant, an optional prevocalic glide (/j, w/),

a nucleus, and an optional nasal coda (/n, ˛/) with no conso-

nant clusters. The phonological tree of a disyllabic Chinese

word, xiàn zài /ɕ j e n ts ai/ (meaning “now”), is shown in

Fig. 2. Concerning the notation, the terms “INITIAL” and

“FINAL” are conventionally used in Chinese phonology,

which are equivalent to the onset and rhyme (including the

prevocalic glide, called the Medial).

When the word-internal syllable boundary is present and

none of the consonant segments across the syllable boundary

(i.e., the nasal coda of the first syllable and the onset of the sec-

ond syllable) are deleted, the word is classified into the cate-

gory of Canonical Form (CAN). For instance, /ɕ j e n tsh ai/ is

regarded as a case of CAN. Note that substituting consonant

segments across the syllable boundary is permitted in this cate-

gory. Second, when a disyllabic word has a clear within-word

syllable boundary but some (not all) of the consonant segments

across the syllable boundary are omitted, it is classified as a

case of Marginal Segment Deletion (MSD; e.g., /ɕ j e n ai/).

Furthermore, when the nuclei across the syllable boundary are

somehow merged and the syllable boundary is blurred, it is a

case of a Nucleus Merger (NUM; e.g., /ɕ j e ai/). This type of

phonetic erosion is more severe than MSD because the nuclei

of the two syllables are merged. Finally, the extreme case is a

Syllable Merger (SYM), in which two syllables are merged

into one (e.g., /ɕ j ai/). In Sec. III, we describe the formulation

of our algorithm, which automatically derives these four

reduction types (RT) from disyllabic word tokens according to

the acoustic properties and syllable structure of the words.

III. DERIVING WORD VARIANTS

Our first step in deriving word variants was to categorize

the surface forms of disyllabic words into the four reduction

types defined in Sec. II. To do this, we conducted automatic

generation of word-level pronunciations by first training a

free phone recognizer, as shown in Fig. 3. Reduction types

were then categorized by comparing the phone sequences of

the surface and canonical forms, whereas the canonical form

was generated from the lexical information. Typical variants

of spoken disyllabic words were selected from the most

frequent reduction types to be later added into a dictionary

for evaluating ASR performance.

A. Surface form generation

For data pre-processing, long speech stretches in the

MCDC8 were first segmented into inter-pause units (IPU)

according to their silent pauses and diverse types of paralin-

guistic sounds such as laughter and inhalation (Liu et al.,
2014). For free phone recognition, word segmentation was

required because Chinese is written consecutively in characters

with no word boundary marks, which are normally available

in alphabetic languages. Moreover, Chinese word segmenta-

tion is controversial because distinct morphological theories

can yield different results. Among the many fine-grained word

segmentizers that have been developed for processing

Chinese, we adopted the word segmentation system developed

by the team of Chinese Knowledge and Information

Processing (CKIP) at Academia Sinica to process the tran-

scripts (Ma and Chen, 2004). The segmented transcripts and

sounds were forced-aligned to obtain initial word boundaries,

which were verified by professional phonetic labelers and used

for automatically generating word-level surface forms.

The Hidden Markov Model Toolkit (HTK) and the SRI

Language Modeling Toolkit (SRILM) (Stolcke, 2002;

Young et al., 2006) were employed to train the acoustic and

language models and perform the free phone recognition and

ASR experiments. We used 52 gender- and context-

independent monophone Hidden Markov Models (HMM)

comprising 39 phones in ordinary syllables and 13 speech-

FIG. 1. (Color online) Word distribution in the MCDC8 Corpus.

FIG. 2. Phonological tree structure of a Chinese disyllabic word. FIG. 3. (Color online) Flowchart of variant selection.
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related phenomena that are common in conversational speech,

such as fillers, particles, word fragments, and paralinguistic

sounds (Liu et al., 2014). For fillers, we used three acoustic

models to model the nasality and length; two for monosyllabic

instances, one with and one without a nasal coda, and one for

multisyllabic fillers, irrespective of the presentence of a final

coda. Four acoustic HMM models were trained for discourse

particles originating from Mandarin Chinese and Southern Min,

a Chinese dialect predominantly spoken in Taiwan. Each HMM

comprises three left-to-right states, each with only one Gaussian

mixture. The acoustic features were 12 Mel-Frequency Cepstral

Coefficients (MFCCs) plus their energy, as well as their delta

and acceleration for 15-ms frames with a 5-ms frame shift. The

subset of 39 acoustic phone models was used for deriving the

surface forms from the training data, but the whole set of 52

acoustic models was used for the ASR experiment.

Finally, the surface form of all disyllabic words in the

MCDC8 was aligned with the citation form through dynamic

programming, in which phonetic similarity was used as the

principal score for generating a word-level pronunciation

table containing the freely recognized phone sequences of

words with the paths of deletion, substitution, and insertion

of citation phones.

B. Word type definition

In disyllabic words, the presence of the word-internal syl-

lable boundary is closely connected with the surface form.

Thus, whether any consonant segment exists across the word-

internal syllable boundary is critical. To account for this factor,

we defined three word types on the basis of syllable structure.

Starting from syllable types, the coda position in a Chinese syl-

lable can be occupied only by nasal consonants, leading to

eight distinct syllable types: V, GV, VN, GVN, CV, CGV,

CVN, and CGVN. As mentioned, the presence of an onset

(On) and a coda (Co) is critical in formally presenting these

eight syllable types, as shown in Table I. To clarify our nota-

tion, we take xiàn zài (meaning “now”) as an example. The

first syllable (r1) xiàn has both an onset and a coda, whereas

the second syllable (r2) zài has an onset but no coda. Adopting
the notation in Table I, the two syllables are formally repre-

sented as OnCo#On1, where # denotes the syllable boundary

and Co#On means that both the r1 coda and r2 onset are pres-
ent. We then regroup the 8� 8 syllable pairs in disyllabic

words into three word types by considering the presence of Co

and On across the syllable boundary (#).

1. Word type I (Co#On)

As shown in Fig. 4(a), both the r1 coda and r2 onset are
present, leading to 16 syllable-type combinations, r1{1Co,

OnCo}� r2{On1, OnCo}. The previous example xiàn zài
belongs to Word type I.

2. Word type II: (Co#1 and 1#On)

Either the r1 coda or r2 onset is present, leading to 16

syllable-type combinations in cases of Co#1: r1{1Co,

OnCo}� r2{11, 1Co} and 16 combinations in cases of

1#On, r1{11, On1}� r2{On1, OnCo}. The combination

pairs are summarized in Figs. 4(c) and 4(d), respectively.

3. Word type III: (1#1)

As denoted in Fig. 4(b), both the coda of r1 and onset of

r2 are empty, leading to 16 combinations r1{11, On1}

� r2{11,1Co} in this case.

C. Phonetic similarity score

When the automatic phoneme alignment was conducted

and the word-level surface forms were generated, phonetic

similarity scores were used to select the optimally matched

phone sequences. These scores were also used in cases of

equal frequency. Because an effectively designed similarity

schema rewards good matches and penalizes poor matches

to achieve meaningful lengths in alignment, we implemented

the phonetic alignment approach employed by Kondrak

(2003) with a set of operating functions (i.e., insertion, dele-

tion, and substitution) for our dynamic alignment between

the citation form and surface form.

As defined in Table II, the scoring functions Cskip and

Csub are the maximum scores for insertion, deletion, and sub-

stitutions with default values Cskip¼�10, Csub¼ 35, and

TABLE I. Classification of Chinese syllables.

Coda

1 Co

Onset 1 V, GV VN, GVN

On CV, CGV CVN, CGVN

FIG. 4. Syllable-type combinations of three WTs.

TABLE II. Scoring functions.

rskip(p)¼Cskip

rsub(p,q)¼Csub - d(p,q) - V(p) - V(q)

where

V(p)¼ 0 if p is a consonant
Cvwl otherwise

�

otherwise

d(p,q)¼P
f2Rdiffðp; q; f Þ � salienceðf Þ

where

R¼ RC if p or q is a consonant
RV otherwise

�
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Cvwl¼ 10. Similar to a distance table, the similarity table

was established using the r scoring functions defined in

Table II and was employed to retrieve the optimal align-

ments. Furthermore, the phonetic segments used in our sys-

tem for Mandarin Chinese were encoded as the vectors of

feature values in floating-point numbers in the range [0, 1].

The function diff ðp; q; f Þ returns the difference between seg-

ments p and q for a given feature vector f in 12 dimensions.

For determining similarity scores, the numerical values,

which range from 0.0 to 1.0, convey four principal features on

the Place of Articulation (bilabial¼ 1.0, labiodental¼ 0.95,

dental¼ 0.9, alveolar¼ 0.85, retroflex¼ 0.8, palate-alveolar

¼ 0.75, palatal¼ 0.7, velar¼ 0.6, uvular¼ 0.5, pharyngeal

¼ 0.3, glottal¼ 0.1), Manner of Articulation (stop¼ 1.0,

affricate¼ 0.9, fricative¼ 0.8, approximant¼ 0.6, high vowel

¼ 0.4, mid vowel¼ 0.2, low vowel¼ 0.0), Vocalic Property-

Highness (high¼ 1.0, mid¼ 0.5, low¼ 0.0), and Vocalic

Property-Backness (back¼ 1.0, central¼ 0.5, front¼ 0.0).

This quantification process was adapted from Connolly (1997)

to advocate the phonetically based multivalued feature system

proposed in Ladefoged (2006) with a supplementary weight on

salience (Kondrak, 2003). The salience settings for feature sets

concerning the vocalic and consonantal properties RV and RC

are detailed in Table III.

Please note that some language-dependent changes were

made for the variant of Mandarin Chinese spoken in Taiwan. In

principle, vowel length feature was excluded because no such

distinction exists in Chinese. The salience settings were sup-

pressed for Lateral and Retroflex, but raised for Aspirated.

D. Reduction type categorization

This section presents our approach to categorizing

reduction types of Chinese disyllabic words by using infor-

mation from acoustic properties (surface form), linguistic

structure (word type), and usage (reduction degree). For

notation, WI, WII, and WIII were adopted to represent sets

containing words belonging to Word types I, II, and III,

respectively. Moreover, we used x to denote any disyllabic

word and y to denote the freely recognized phone sequence

for x. The reduction type was implemented in a straightfor-

ward equation as follows. As shown in Eq. (1), if y recog-

nized for a word x has a similar phone sequence as that of

the citation form (i.e., no consonant across the syllable

boundary omitted), then y is classified as CAN. Concerning

the length constraint, the number of segments should exceed

that of the shortest segment sequence of the word type to

which x belongs. As shown in Eq. (2), if x [ WI and the

decoded y has a phone sequence with at least one consonant

segment (deleted) and one consonant segment (original or

substituted), then y is categorized as MSD. If x [ WII, and y
has a glide substituting the consonantal segment, then it is

also classified as MSD. For Word type III with empty conso-

nantal segments across the syllable boundary, no MSD is

defined. The length constraint guarantees that the phone

number of y does not exceed that of the citation form with a

slightly reduced segment number. As shown in Eq. (3), the

CV-structure constraint on y for all three word types is that y
must have two consecutive Vs The length constraint limits

the length of y to have at least two deleted segments. In con-

trast to CAN and SYM, the word-internal syllable boundary

is more blurred in NUM than in MSD. As shown in Eq. (4),

y contains at most one V, and the length of y should not

exceed the length of one syllable.

RCAN : For 8x; and its y constrained by conditions ðaÞ and ðbÞ
ðaÞ if x 2 WI; and its y¼^C � ½GV� þ CCþ ½GV� þ C � $;

if x 2 WII; and its y¼^C � ½GV� þ Cþ ½GV� þ C � $;

if x 2 WIII; and its y¼^C � G?Vþ C � ½GV� þ C � $

ðbÞlengthðyÞ � e;

where e ¼ minimum segment length of the

word type to which x belongs; (1)

RMSD : For 8x; and its y constrained by conditions ðaÞ and ðbÞ
ðaÞ if x 2 WI; and its y¼^C � ½GV� þ ½CG�f1g þ ½GV� þ C � $;

if x 2 WII; and its y¼^C � ½GV� þ G½GV� þ C � $

ðbÞ lengthðxÞ þ 1 � lengthðyÞ � e� 1;

where e ¼ minimum segment length of the

word type to which x belongs; (2)

TABLE III. Features and salience settings for Mandarin Chinese.

Feature Salience RC RV Feature Salience RC RV

Syllabic 5 þ þ Place 40 þ –

Voicing 10 þ – Nasal 10 þ þ
Lateral 5 þ – Aspirated 10 þ –

High 5 – þ Back 5 – þ
Manner 50 þ – Retroflex 5 þ þ
Diphthong 5 – þ Round 5 – þ
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RNUM : For 8x; and its y constrained by conditions ðaÞ and ðbÞ
ðaÞ if x 2 WI [WII [WIII; and its y¼^C � G?VVþ C � $
ðbÞ lengthðxÞ � lengthðyÞ � e� 2;

where e ¼ minimum segment length of the

word type towhich x belongs; (3)

RSYM : For 8x; and its y constrained by conditions ðaÞ and ðbÞ
ðaÞ if x 2 WI [WII [WIII; and its y¼^C � G?V?G?C � $

ðbÞ lengthðyÞ � e;

where e ¼ 5; the maximum segment length of a Chinese

syllable with a pre–nucleus G and a post–nucleus G: (4)

IV. ANALYSIS OF SELECTED VARIANTS

We ran the variant selection procedure on all disyllabic

words in the MCDC8, except for 10% of the words in the

evaluation set, which were later regarded as unseen words in

the ASR experiment. As a result, only one disyllabic word

was included in the unseen word set. Thus, 3872 disyllabic

words from the MCDC8, totaling 31878 tokens, were

processed through free phone recognition, surface form gen-

eration, word type classification, and reduction type catego-

rization. Subsequently, the most frequent phone sequence

from the top-ranked reduction type was selected as the typi-

cal variant. This section analyzes various linguistic aspects

of the variants selected using our proposed method.

A. Frequent words prefer syllable merger

According to the Exemplar Theory (Pierrehumbert,

1994) and the Magnet Theory (Kuhl et al., 2008), clusters of
phonetic forms are formed by production frequency and pho-

netic similarities to the citation forms. Solid clusters may, to

a certain degree, represent typical word variants other than

the citation form in the mental lexicon, which are also

closely linked with the word meaning. However, few studies

have discussed word variants in spontaneous speech because

of a lack of automatic tools for processing large-scale natural

speech data. Applying our algorithm yielded insightful

observations, as shown in Fig. 5.

First, the more frequent a disyllabic word is produced,

the more likely it is that the extreme merger form (SYM) is

selected as the representative RT. Figure 5 depicts the ten-

dencies of the four RTs for disyllabic words that appear

more than ten times and are ranked in order of production

frequency. In the figure, the darker the color is, the higher

the percentage of the selected RT is. For the 100 most fre-

quent disyllabic words, the most representative RT is SYM.

For words that are produced less frequently, CAN, indicating

the least deviation from the citation form, is selected. The

two types in between, MSD and NUM, are clearly less fre-

quently used. The tendency is obvious: the more often a

word is produced, the more reduced it is in spontaneous

speech. In addition, the observed RT preference may lead us

to reconsider the observation of Kuhl et al. (2008) that

reduced speech may serve as the connection that forges a

learning map between the produced form and the perceived

sound in the developmental nature of language acquisition.

Concerning word length in terms of duration, the kernel

density plots in Fig. 6 support the notion that the more

reduced a spoken word is, the shorter it tends to be. Note

that we used a scaled duration for normalization, DURnorm

¼ ðxi � �xÞ = ðxmax � xminÞ, where xi is the word duration and

�x denotes the average duration from all the tokens of a given

disyllabic words spoken by a given speaker. The nominator

term is the difference of the maximum and minimum dura-

tions observed from the sample in order to scale the original

duration to a fixed range between 0 and 1 (Lobanov, 1971).

As the confidence intervals show, the mean duration of

words for which SYM is selected as the typical RT is 0.315,

which is considerably shorter than that of those words cate-

gorized as NUM, MSD, or CAN. Moreover, the RT coverage

in the case of SYM is 51.92%, indicating that native speak-

ers prefer producing SYM in conversational speech,

FIG. 5. Results of RT classification in terms of word frequency ranking and

the RT coverage percentage (the darker the line boxes, the higher the RT

percentage).
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followed by CAN with a coverage rate of 28.29%. As for

MSD and NUM, their sum coverage is approximately 20%.

B. Prosodic position results in differing variants

The prosodic position in which a word is produced

affects the prosodic as well as segmental properties of the

word (Torreira and Ernestus, 2011; Hanique et al., 2013). To

observe whether our algorithm would choose different RTs

in pools of words occurring in different prosodic positions,

we divided our disyllabic words into four groups according

to their position in the IPU: initial, medial, final, and isolated

IPU (an IPU formed by a single disyllabic word). Figure 7

shows the results. For IPU-initial disyllabic words, more

SYM are selected with a higher coverage (the darker col-

umn). The figure also shows that the more frequently a word

FIG. 6. (Color online) RT coverage

and duration pattern for overall data

and RTs.

FIG. 7. Results of RT classification,

separated for four prosodic positions.
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is produced, the higher the chance of it being categorized as

SYM is. By contrast, for IPU-final words, more CANs are

selected.

Concerning Chinese, the final lengthening and initial

shortening of words are mentioned in Tseng et al. (2013b)
from the perspective of duration. Our results suggest that

prosodic position is not only related to temporal proper-

ties, as shown in Fig. 8, but also reflected in the surface

form. Observing the peaks of the normalized duration of

words in the IPU-initial position, SYM words are skewed

to the left whereas the other RTs are more centric. Initial

shortening is clearly observable in SYM words, whereas

final lengthening is observable in CAN, MSD, and NUM

words. This is evidence that initial shortening may be

caused by words of which the syllable merger form is pre-

ferred, which are mostly high-frequency words. Moreover,

the peaks in IPU-final and -isolated tokens for SYM words

remain centric, whereas the CAN, MSD, and NUM words

skew more to the right because they have a longer dura-

tion. For example, for the frequently used word y�in wèi
(meaning “because”), SYM is the predominant RT in the

overall data and in all prosodic positions. However, word

variants selected from different pools of data are distinct.

It is /z̨ ei/ if the pools are from IPU-final and -isolated

tokens of y�in wèi. However, the variants selected from the

pools of IPU-initial and -medial tokens are /z̨ / and /i/,
respectively. In other words, to provide a full account of

pronunciation modeling, contextual information such as

prosodic position is necessary.

To statistically test the aforementioned effects, linear

regression models were built. Because word duration was nor-

malized relative to the word and speaker, we modeled the

probability of a highly reduced token with a generalized

mixed effect model with the normalized duration (NormDUR)

as the observations, and the nominal RT and IPU-position

groups as the fixed predictors. Compared with the null model,

a main effect of the RT group exists [F(3, 26708)¼ 692.82,

p< 0.001]. The differences between automatically derived

RT groups are all statistically significant (all p< 0.001).

Furthermore, we included predictors for the IPU-position

group and the interactions between the IPU-position and RT

groups by means of gradual addition. As suggested by

Hanique et al. (2013), if models with more predictors or inter-

actions added have a lower absolute Akaike Information

Criterion (AIC) value (Akaike, 1973) than the same model

without the particular predictor or interaction, the effects and

across-group interactions may statistically be more effective.

Comparing two models by using the simulated likelihood ratio

test with 1000 replications revealed that a complex model

with added predictors on the IPU-position group has a lower

AIC value (p< 0.001). The statistically significant difference

between the simpler and complex regression models strongly

suggest that both the RT and IPU-position groups are crucial

for predicting word duration.

Moreover, a complex model built with the interaction

effect across the RT and IPU-position groups was signifi-

cantly more accurate than the aforementioned regression

models (p< 0.05). However, further analysis revealed

nonsignificant differences between all combined, across RT

and IPU-position group interactions and the specific added

predictor IPU-medial group (p> 0.1). Our statistical results

show that prosodic position is a critical factor related to the

temporal property of spoken words in spontaneous speech,

among which utterance-medial disyllabic words seem to

have relatively unstable durations. Nevertheless, our results

on the reduction types confirmed that the RTs classified

according to the acoustic properties and phoneme sequence

comparison reflected the differences in word duration.

C. Variants correlate with word types and phonetic
similarity

According to the presented results, the typical variants

might not always be phonetically similar to the citation

form. The surface form is determined by reduction degree,

production frequency, and word position in utterance (i.e.,

prosodic position). Compared with MSD and CAN words,

SYM and NUM words with severe segment omission are

phonetically more dissimilar to the citation form, as shown

in Fig. 9(a). The density distribution of phonetic similarity in

SYM and NUM words are similar, suggesting that speakers

retain a similar degree of phonetic similarity to preserve a

certain degree of intelligibility in the variant forms to distin-

guish these forms from other lexical items (Lindblom, 1990;

Schuppler et al., 2012).
Concerning the relationship between word type and

phonetic similarity, there is always one particular word type

that performs differently from the others, except for SYM

words, as shown in Fig. 9(b). This means of examining

reduced word forms facilitates identifying particular prefer-

ences of speech reduction from the perspective of word

structure. For WI (Co#On), fewer segment substitutions are

preferred for CAN words. Regarding the preboundary nasals

FIG. 8. (Color online) Duration patterns of RTs in four prosodic positions.
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/n, ˛/ for WII (Co#1), MSD words tend to be preserved in

the form of glides rather than entirely omitted as those in

WII (1#On) and WI (Co# On) are. In NUM words, the cen-

tric distribution in WIII (1 #1) indicates that the variants

are not as diverse as they are in the other word types.

To statistically test the above observations, we took the

word type group as fixed predictors. Regression models for

CAN, NUM, and SYM words were well represented with

statistical significance (p< 0.001), except for the MSD

words (p> 0.05), in the relationship between the reduced

word forms and their distance of similarity from citation

forms. Notably, for the CAN words, WI (Co#On) was statisti-

cally significant in the phonetic similarity scores (p< 0.001),

whereas the other word types were nonsignificant (all

p> 0.01). For the NUM words, WIII (1 #1) was less ex-

planatory (p¼ 0.192), whereas the other word types differed

significantly in their similarity scores (all p< 0.001).

Finally, the similarity scores of WII (Co #1) and WIII

(1 #1) in the SYM words differed significantly, but seem-

ingly shared a similar variation derivation pattern (all

p< 0.001). The difference in the similarity scores of the

other two word types in the SYM words was nonsignificant

(both p> 0.001, but p< 0.05) and may suggest that the pat-

terns in phonetic similarity were somehow more diverse.

D. Likely more than one typical variant

Most RT selected for disyllabic words might not always

be significantly representative in terms of percentage. As

shown in the Appendix, the coverage percentage ranges from

40% to 90%, implying that for certain words, multiple var-

iants deviating from each other in the temporal and spectral

domains (Hämäläinen et al., 2009) are possible. For méi yǒu
(negation), for example, the top two RTs are SYM and CAN,

with 66.9% and 31.35% of coverage, respectively. The form

/m @/ is selected from SYM, and /m e ou/ is selected from

CAN (Fig. 10). We observed that both variants are used very

frequently in colloquial speech. Typically, the pronunciation

dictionary in an ASR system contains only the citation form

/m ei j ou/. In the ASR experiment, we added the most repre-

sentative variant to the pronunciation dictionary; in this case,

/m @/. Typical variants may come from the same RT or

belong to different RTs, seemingly depending on the RT cov-

erage and prosodic position. More concretely, negation can

be produced in a heavily reduced form, where the negation

meaning is self-apparent from the context. Negation méi yǒu
can also be prolonged when produced in a prosodically final

position, accompanied with hesitation. A similar notion is

proposed in the hypothesis of Hyper- and Hypo-speech

FIG. 9. (Color online) Kernel density of normalized similarity scores for (a) all RTs and (b) individual RT separated for different word types.

FIG. 10. Examples of typical variants selected for méi yǒu (negation): (a) SYM /m @ /; (b) CAN /m e ou/; and (c) the citation form /m ei j ou/.
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(H&H) Theory (Lindblom, 1990) that speakers might use

two distinct strategies to produce words in two contrary

forces to maintain minimal self-articulatory effort and to sat-

isfy a sufficient degree of discriminability for listener intelli-

gibility of the uttered words (Schuppler et al., 2012). The
diverse means of articulation may result in varying degrees

of reduced word forms in different prosodic positions. Thus,

for some words, more than one typical variant form is possi-

ble. Currently, our algorithm selects only one typical variant

for each word. However, in later refinement, we will establish

a threshold to allow for selecting multiple variants.

E. Variant selection of realistic speech data

The MCDC8 was recorded in a lab environment. To test

whether our variant selection algorithm was also robust for

speech data in a realistic noise environment, we ran the vari-

ant selection procedure using a corpus of street interviews

(Tseng, 2016) for the words listed in the Appendix. The

same acoustic models used for the MCDC8 were also used

for the Sociophonetic Interview Corpus (Tseng, 2016),

which comprises 1402 street interviews recoded in 12 areas

in Taiwan. It consists of speech recorded from 605 male and

797 female interviewees. The most frequently selected RTs

of the 42 disyllabic words listed in the Appendix for the

MCDC8 and Sociophonetic Interview Corpus are nearly the

same, with only six words differing. However, the variants

selected for each of the words differ. This has to do with

discrepancies of speaker numbers and the number of word

tokens produced by each speaker in the two corpora.

Nevertheless, our selection algorithm through RT reflects

intrinsic speech reduction processes related to linguistic sys-

tems. Considerations of knowledge-based linguistic structure

and usage-based empirical information seem to provide a

favorable solution for identifying important spoken word

forms in casual speech data, which may also be relevant in

the mental representation of spoken words. For instance,

nine of the 42 words shown in the Appendix have identical

variants selected for both corpora. These variants are all

heavily reduced (SYM), such as wǒ men /˛/ (we) and nǐmen
/n/ (plural of you). Neither can be directly derived using the

phonological rules of the Edge-in Theory.

V. INCLUSION OF VARIANTS INTOASR SYSTEM

We conducted two ASR experiments to assess the

impact of variants selected using our method on a Chinese

ASR system. In the first ASR experiment, we added variants

for disyllabic words that occurred more than 20 times in the

MCDC8, totaling 216 variants. In cases of CAN, variants

were not included if they were identical to canonical forms.

In the second experiment, we used the same datasets and pa-

rameter settings, but applied a data-driven statistical algo-

rithm to include pronunciation variants into the ASR

dictionary (i.e., the pruning method).

A. Speech data

After discarding laughter, silent pause, speech-like

background noises, paralinguistic sounds, and non-Chinese

words, 366min of speech data were used to train the acoustic

models. Word boundaries were manually verified. The eval-

uation set contained 41min of speech data. As a result, the

training and development sets comprised 14 630 IPUs,

equivalent to 84 150 word tokens. The evaluation set con-

tained 1630 IPUs, totaling 9383 word tokens. With 31

unseen words in the evaluation set, the number of words

actually used in the dictionary of our ASR experiment was

6049, covering 99% of the words of the MCDC8.

B. Experiment setup

An ASR system normally models at least two probabil-

ity distributions: (1) the probability of the acoustics (A)
matching the particular hypothesized utterance (W), noted as

P(AjW), and (2) the prior probability of the hypothesized

utterances P(W). However, a commonly used method of con-

sidering variations in pronunciation and duration is to intro-

duce an intermediate pronunciation model P(VjW), thereby

bridging acoustics models P(AjV) and words P(W). As

shown in Eq. (5), the goal of an ASR system is to identify

the string of words W and the corresponding variant strings

V that maximize this objective function. The utterances used

in our ASR experiment were the development (DEV) and

evaluation (EVAL) sets, with the utterances in the DEV but

not in EVAL seen and trained in the language model. The rec-

ognition process operated on both sets was performed

through an exhaustive search with a pronunciation model

weight of 5 (aR), as well as the empirically tuned word inser-

tion penalty and weight on the language model (b).The latter
two tuned parameters, namely, insertion penalty and weight

on the language model, used for deriving the optimal recog-

nition result from both evaluated utterance sets were 20 and

16, respectively. We fixed the pronunciation model weight

to 5 in the ASR experiments because our task was not to

optimize the weight on the pronunciation model but to test

the performance of our variant inclusion in the pronunciation

dictionary.

Ŵ ¼ arg max
W

max
V

½PðAjVÞPðVjWÞaRPðWÞb� : (5)

C. The pruning method

For comparison, we implemented a previously intro-

duced method through the pronunciation pruning of our data

(Tsai et al., 2007). In contrast to the free phone recognition

used in our variant selection, the experiment with the prun-

ing method used “phone-level” forced recognition with a

phone dictionary with prior probabilities to generate the sur-

face form. Analogous to the tf–idf score for indexing terms

in information retrieval, the pf–iwf score is used for pronun-

ciation pruning. If a pronunciation vj occurs more frequently

for the word wi, the pf–iwf score dij is generally higher. It is

lower if vj appears more frequently in other words. With pro-

nunciation variants ranked by pf–iwf score dij, an adjustable

threshold lS is used to select pronunciations to be included

in the dictionary. In the following, we briefly introduce the

terms used in the pruning method.
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1. Pronunciation frequency (pf)

In terms of indexing pronunciations for words, the eligi-

bility of pronunciation vj for word wi is measured by pf ,

pfij ¼ cijX
allj

Cij

¼ P vjjwi

� �
; (6)

where Cij is the count of word wi being pronounced as vj,
and Pðvj jwiÞ is the prior probability that wi is pronounced as

vj. Typically, a pronunciation being observed more fre-

quently for a word stipulates a higher correlation with the

word.

2. Inverse word frequency (iwf)

While the pf presents the scores of varying pronuncia-

tions within a word, the iwf scores a particular pronunciation
across different words. A pronunciation shared by many

words leads to intense confusion for ASR systems; thus,

such a pronunciation should be less eligible for inclusion in

the dictionary. The iwf for a pronunciation is defined as

iwfj ¼ log
jXj
jXjj ; (7)

where X is the vocabulary of words, Xj is the set of words

whose pronunciation variants include vj, and j � j is the num-

ber of elements in the set. In Eq. (7), all of the words with

pronunciation vj are treated equally, but the resulting confu-

sion depends on both of the frequencies of the words causing

confusion and the probabilities that those words are pro-

nounced as vj. Therefore, the inverse word frequency (iwf ) is
redefined as follows:

iwfj ¼ 1X
wk2fXjg

P vjjwk

� �
P wkð Þ

¼ 1

P vjð Þ
; (8)

where PðwkÞ and PðvjÞ are the prior probabilities of the word
wk and the pronunciation vj in the corpus. The inverse word

frequency for pronunciation vj, iwfj, is thus higher when vj is
more frequently observed for commonly used words.

3. Pronunciation frequency and inverse word
frequency (pf2iwf )

The pf–iwf score, obtained by integrating the pronunci-

ation frequency and inverse word frequency as defined

above, is proposed to evaluate the eligibility of a pronuncia-

tion vj to be included for a word wi in the dictionary.

dij ¼ pfij 	 ðiwfjÞc; (9)

c is the adjustable weight for tuning the iwf score. When it is

set to zero, it is reduced to the original pronunciation fre-

quency, pf . In the case of equal unity, it is the mutual infor-

mation between pronunciation vj and word wi.

D. Experimental results

For reporting the results, the measures of intrinsic and

added confusability of a baseline lexicon and a newly

enhanced pronunciation dictionary are used. The confusabil-

ity of a dictionary is calculated according to the ratio of the

number of words with confusing pronunciation over the

number of words in the dictionary. Added confusability was

defined as the ratio of the number of added variants shared

by at least two distinct words over the number of words in

the dictionary. ASR performance is presented in terms of

character error rate (CER). Table IV summarizes the experi-

mental results. The definitions of the “confusability of a

dictionary” (Conf. of Dic.) and the “added confusability for

added pronunciations” (Added Confusion) conform to those

used in Tsai et al. (2007). The baseline performance in CER

with optimized weights on word insertion penalty, pronunci-

ation model, and language model for the DEV and EVAL sets

is 74.27% and 65.68%, respectively. The difference is due to

the training of language model using the IPU content in the

DEV set. To evaluate the impact of variants selected using

our algorithm and the pruning method, the settings in Table

IV (B)–(D) were used. In our proposed selection algorithm

(B), the number of added variants is 216. Improvement in

ASR performance was achieved, with the CER reduced by

1.54% and 1.21% for the DEV and EVAL sets, respectively.

The results presented in Table IV (C) are the most favorable

results obtained after tuning the weight c and putting a single

threshold on pruning (such as dij > lS) for our data.

Controlling the pruning threshold on pf–iwf score dij for a
similar level of added confusability as that in the case of our

method, the ASR performance improved for the DEV data

but not for the EVAL data. Because a large number of var-

iants (12 667) were added to the pronunciation dictionary,

the high confusion may have affected the correct word cho-

sen for the unseen IPU content. Thus, we lowered the prun-

ing threshold on pf–iwf score dij to select only the 216 best

variants, as done in our approach (B). In (D), the dictionary

TABLE IV. Character Error Rate (CER) with disyllabic word variants selected by our method and those by pruning method.

Surface Form Generation Variant Selection

Dev.

CER (%)

Eval.

CER (%)

Conf. of

Dict. (%)

Added

Conf. (%)

Added

Variants (#)

Added Variants that

Conf. (#)

(A) Baseline: Canonical dictionary 65.68 74.27 22.19 — — —

(B) Free phone recognition Proposed method 64.14 73.06 23.57 0.96 216 58

(C) Phone-level forced recog. pf-iwf 64.30 77.01 23.62 0.94 12,667 57

(c¼ 0.8, lS¼ 0.88)

(D) Phone-level forced recog. pf-iwf 66.30 74.93 22.28 0.05 216 3

(Top N added variants)
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confusion increased slightly, and the performance did not

improve. However, the noise of word recognition on the

unseen data (EVAL set) was clearly reduced by controlling

the number of added variants. Table IV shows that after the

variants were included, the confusability increased, but the

ASR performance was improved, suggesting that the var-

iants selected by our algorithm may to some degree represent

typical spoken word forms in reduced, spontaneous speech,

thus improving ASR performance.

E. Discussion on added variants in ASR system

Because poorly selected variants may be included in the

recognition processes or in data-driven decision trees,

numerous approaches have been proposed to reject variants

that are highly confusable by using phoneme confusability

matrices (Wester, 2003; Tsai et al., 2007). Thus, confusabil-
ity is used as a key feature in advanced processing on the

pf–iwf (Tsai et al., 2007), or phonological rule constraints

are used to exclude improper variants by adopting measures

such as logarithmic likelihood-based criterion (Amdal et al.,
2000), entropy (Yang et al., 2002), and absolute or relative

frequency (Kessens et al., 2003). Alternatively, variants can
be implicitly handled in embedded, discriminatively learned

probabilistic models (Jyothi et al., 2013; Karanasou et al.,
2013) and pronunciation models in a weighted finite-state

transducer for a speech recognizer (Jyothi et al., 2013;

Karanasou et al., 2013; McGraw et al., 2013). For resolving
word variant problems, manual phonetic transcription

(Oostdijk, 2002; Maekawa, 2003; Pitt et al., 2005; Van Bael

et al., 2007) has been shown to facilitate shortlisting the

most frequently produced phonetic forms. However, con-

ducting projects of this scale to guarantee the reliability of

data annotation is expensive. Our approach is based on the

acoustic properties of word tokens with consideration of

language-dependent knowledge on reduction degree and

word type. We attempted to allocate a linguistic unit (word)

that preserves a certain degree of invariance between the

meaning and phonetic form, which differs from thę strategies

used in previous studies for deriving variants with pruning

measures or with a discriminant or generative weight-

learning on pronunciation modeling, which focus mainly on

the phonemic level for pronunciation modeling.

VI. CONCLUSION

We observed an improvement in ASR performance after

adding only a small number of disyllabic word variants to

the pronunciation dictionary. Although we evaluated only

those variants selected by our algorithm on a relatively small

spontaneous speech data set, the results revealed that the cat-

egorical RTs we proposed did improve ASR system per-

formance. CAN and SYM are preferred for Chinese

disyllabic words, comprising over 75% of all RTs. For the

next step of research focus, we may reconsider reduction in

spontaneous speech in a more complex manner, encompass-

ing production frequency, prosodic position, reduction

degree, and additional language-dependent properties (Bell

et al., 2003). For future works, we will extend the scope

from disyllabic words to any disyllables to study whether the

proposed RT classification is also applicable to nondisyllabic

words. Viewing word variants from the cognitive perspec-

tive, we will also test whether the variants selected using our

method have a certain degree of psychological reality by

conducting perceptual experiments.
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APPENDIX

For information about the reduction types and variants

selected by the proposed algorithm for 42 most frequent

disyllabic words in the MCDC8, please see Table V.

TABLE V. Information about word count, WT, RT and variant form of 42 disyllabic words that occur more than 100 times in the MCDC8 are listed for the

MCDC8 and the Socio-phonetic Interview Corpus (Socio).

Word Gloss

MCDC8

Count WT Citation MCDC8RT

MCDC8

RT (%) MCDC8 Variant

Socio

Count

Socio

RT

Socio

RT (%)

Socio

Variant

jiù shı̀ that is 1039 WII /ʨ j ou ʂ ʉ/ SYM 50.82 /tɕ ʉ/ 3185 SYM 47.66 /ɨ/
wǒ men we 878 WII /w o m ǝ n/ SYM 84.97 /˛/ 579 SYM 73.40 /˛/
rán hòu then 733 WI /z̨ a n x ou/ SYM 79.81 /t au/ 2252 SYM 77.13 /l au/

jué dé to feel 676 WII /ʨ ye t ǝ/ SYM 64.64 /tɕ ye/ 794 SYM 62.09 /tɕ ye/
y�in wèi because 651 WII /i n w ei/ SYM 67.28 /z̨ ei/ 1024 SYM 73.14 /z̨ /

méi yǒu not/have not 571 WIII /m ei j ou/ SYM 66.90 /m ǝ/ 3820 SYM 68.43 /z̨ au/

suǒ yǐ so 479 WIII /s w o i/ SYM 90.61 /ts ei/ 413 SYM 84.75 /ts ei/

kě shı̀ but 466 WII /kʰ ǝ ʂ ʉ/ SYM 61.16 /kʰ ʉ/ 421 SYM 58.91 /ɨ/
qı́ shı́ in fact 431 WII /ʨʰ i ʂ ʉ/ SYM 54.06 /tɕʰ y/ 198 SYM 60.10 /ɨ/
shı́ hòu time 420 WII /ʂ ʉ x ou/ SYM 83.10 /ʂ ou/ 707 SYM 79.92 /ts ou/

tā men they 415 WII /tʰ a m ǝ n/ SYM 83.37 /tʰ a ˛/ 516 SYM 69.77 /ɨ/
xiàn zài now 397 WI /ɕ j e n ts ai/ SYM 69.02 /ɕ j ai/ 746 SYM 64.34 /ʂ j ai/
bǐ jiào more 371 WII /p i ʨ j au/ SYM 63.34 /tɕ j au/ 1902 SYM 68.19 /p j au/

shé me what 346 WII /ʂ ǝ m ǝ/ SYM 90.75 /s ˛/ 681 SYM 88.11 /p/

zhè yàng in this way 339 WIII /tʂ ǝ j a ˛/ SYM 87.02 /tɕ j a/ 885 SYM 94.58 /p/
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y�ing gāi should 168 WI /i ˛ k ai/ SYM 41.07 /n ǝ/ 1528 SYM 64.99 /ɨ/
zı̀ jǐ -self 168 WII /ts ɨ tɕ i/ SYM 62.50 /tʂ i/ 547 SYM 61.79 /tʂ i/
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