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Abstract 
In this study, we present evidences from analyzing acoustic 
parameters of fluent continuous speech to show that within-
paragraph prosodic phrase boundaries are related more to 
contrasts of neighborhood prosodic states rather than 
between-phrase pause durations; prosodic states receive more 
constraints from higher level discourse information. Revising 
a modular acoustic model by Tseng’s Hierarchical Prosodic 
Phrase Grouping (HPG) framework [2, 3] and examining the 
much varied Prosodic Phrase (PPh) boundary B3 within 
speech paragraph, statistical accounts of layered contributions 
reveal distinct contrasts between boundary immediate 
duration and intensity patterns irrespective of pause duration. 
Contrasts of F0 contour patterns were also observed in these 
locations.  Evidences obtained also illustrate how PPh 
boundary states are specified more by higher level discourse 
information than by lower level prosodic word construction. 
These results combined suggest that contrastive neighboring 
prosodic states are more significant cues to PPh boundaries; 
boundary pause duration is less significant. The results also 
help explain why in fluent speech between-phrase pause 
durations vary greatly, and can be applied to automatic 
speech segmentation.  
Index Terms: fluent speech prosody, Hierarchical Prosody 
Group, prosodic state, prosodic phrase, boundary break,  
discourse prosody, linear regression model  

1. Introduction 
We have collected various types of fluent Mandarin speech 
data from read narratives in COSPRO [1] and designed 
annotations on the basis of perceived boundary breaks in 
relation to prosodic units. Our Hierarchical Prosodic Phrase 
Grouping (HPG) [2, 3, 4] specifies multiple-phrases speech 
paragraphs as a significant discourse prosody unit above 
phrases whereby COSPRO annotation [5] specifies 5 levels of 
within-paragraph boundary breaks, i.e., from lower levels 
upward Syllable (Syl) boundary B1, Prosodic Words (PW) 
boundary B2, Prosodic Phrase (PPh) boundary B3, change of 
breath (Breath Group BG [6]) boundary B4 and Prosodic-
Group (PG) terminal boundary B5 where physical pause 
applies from B2 to B5. We have shown from quantitative 
analyses of speech corpora that output prosody of multiple-
speech paragraphs are not at all un related phrase strings, but 
rather cumulative outcome of contributions from all prosodic 
layers specified by HPG [3,4]. Further, central to fluent 
speech prosody is the contribution from above-phrase higher 
level information related to discourse organization, in which 
phrases and sentences are all prosodic sub-units of speech 
paragraph; speech paragraphs sub units of spoken discourse. 
Among each and every prosodic level, prosodic boundaries in 
relation to discourse prosody organization are significant cues; 
perceived boundary breaks are therefore significant prosodic 
units as well.  

However, in a previous study [7,] we discovered that not all 
boundary breaks could be accounted by pause durations. We 
found from consistently annotated speech data of 2 speakers 
at slightly different speaking rate (220, 230ms/syllable) that 
higher level boundaries B4 and B5 all possessed pause 
duration over 330 ms (m=330, 520 ms for B4, SD=162, 124 
ms; m=415, 595ms for B5, SD=209, 109 ms, respectively), 
indicating pause durations alone can be viewed as significant 
cues for BG and PG boundaries. However, boundary pause of 
B3 varied considerably in duration (from 17-585, 21-538ms 
at m=224/248ms, SD=150, 207ms, respectively) from 0 to 
over 350 ms across speakers, indicating pause durations alone 
are NOT sufficient for PPh boundaries. Therefore, to develop 
automatic speech segmentation or recognition, pause 
durations are adequate cues to locate B4 and B5; speech 
paragraphs as discourse units could be identified. 
Unfortunately, the rationale would not be applied to within-
paragraph prosodic phrase boundaries B3 since it could not be 
located by pause duration. The question then is why PPh 
boundary break B3 varies so much in duration across 
speakers and yet is still perceived consistently across 
transcribers?  
Note nevertheless that the perception based annotation is it 
makes examination of signal-perception discrepancies 
possible, especially when perceptions are consistent across 
transcribers. We therefore hypothesis that there must be cues 
in the speech signal other than pause duration that are 
significant to PPh boundary, and are significant to the human 
ear as well. The same previous study also demonstrated by 
including boundary immediate prosodic state by one syllable 
of immediate B3 neighborhood, predictions of B3 were 
improved by 8.3% [7]. We therefore hypothesize now that B3 
predictions can be further improved by including more 
neighborhood prosodic states in the prediction.  
In the following sections, we will show how the previous 
model is revised to accommodate more boundary immediate 
syllable duration allocation patterns along the time domain, as 
well as intensity distribution patterns, and compare newly 
obtained predictions from the same speech materials with 
those from the previous model. 

2. Speech Data and Methodology 

2.1. Speech Data  

The same Mandarin Chinese speech data used for previous 
analysis [5, 7] were selected from Sinica COSPRO 0 [1], i.e., 
one male and one female speaker (F051P and M051P). Both 
speakers are professional radio announcers under 35 years of 
age at the time of recording. Each speaker read text of 26 
discourse pieces in sound proof chambers. The 26 6discourse 
pieces ranged from 85 to 981 characters in length which 
amounted to a total of 11602 syllables. The corpora were first 
automatically labeled for segmental identities by the HTK 
toolkit in SAMPA-T notation [5], and then manually tagged 



for perceived boundary breaks by trained transcribers using 
the Sinica COSPRO Toolkit [8]. Annotation results were 
spot-checked by professional transcribers for segmental 
alignments as well as inter-transcriber consistency.. 
  

2.2. Methods of Analysis Speech Data 

We analyzed the speech data in three steps: 1. three acoustic 
parameters were extracted from annotated speech data, i.e., 
pause, syllable duration and intensity. 2. Derived acoustic 
parameters were subsequently normalized. 3. Respective 
layered contributions specified by the HPG framework were 
obtained through a step-wise linear regression model. Figure 
1 is a flowchart that shows the basic HPG analysis.  
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Figure 1: Flowchart of Analysis by HPG Framework. 

 
Table 1 summarizes derived acoustic features of both 
speakers, where µ and σ represent the mean and standard 
deviation of each acoustic feature, pause, duration and 
intensity, respectively. 

Table 1.  Derived Acoustic features by speaker. 
Speaker μPause σPause μDuration σDuration μIntensity σIntensity 

F051P 37 106 200 65 3.65 0.07
M051P 45 138 190 60 3.62 0.05

2.3. Speech Data Normalization 

In order to eliminate between-speaker variations, each set of 
data was normalized with the mean and standard deviation of 
the entire class. The original method of normalization [4] 
would easily be affected by extreme data, causing normalized 
data distribution of to shift, and thereby making comparisons 
between speakers meaningless. To rectify the situation, we 
modified the normalization as follows: 

Ynor(n)} .Ynor(2),.. Ynor(1), { Ynor 
Y / )Y -  (Y(i)  Ynor(i)

=
= σµ  

Y(i) and Ynor(i) represent each datum in Class Y and 
Normalized Class Y respectively. µY and σY represent the 
mean and standard deviation in Class Y. The same 
modification was made for the three acoustic features under 
consideration. Hence Y would be duration, intensity and 
pause in the following sections. 

2.4. Revising the Duration Model 

A syllable duration model corresponding to the HPG 
framework was constructed previously [7] to predict and 

locating boundary breaks B2 to B5across continuous speech 
rather than simply predicting pauses. The predictions thus 
bear discourse information in relation to prosody organization 
specified by HPG. Higher level BG and PG boundary breaks 
(B4 and B5 respectively) indicating multiple-phrase speech 
paragraphs across fluent continuous speech could easily be 
located using pause durations alone (see Section 1), whereas 
lower level within-paragraph boundary breaks B3 and B2 
corresponding to PPh and PW respectively were predicted 
using both boundary break pause and durations of one 
immediate neighboring syllable.  
The goal of the present study is to revise the syllable duration 
model by altering both the Syllable (the bottom) layer and the 
PW (the immediate higher) layer of the previous regression 
model to better predict PPh boundary B3. Using the same 
step-wise regression technique [2, 3], a linear model with four 
layers [9, 10] was modified and developed to predict 
speakers’ timing behavior through temporal allocation of 
syllable duration modification. At the syllable layer, we used 
6 consonant groups and 6 vowel groups in order to decrease 
the difference between groups. The Revised Syllable Layer 
Model could be written as function (1): 

 Delta1    
abovefactor each  of constraintboundary PW     

above syllableeach  of Factorsway -3    
abovefactor each  of Factorsway -2    

FTt FVt FCt PTt PVt PCt     
Tt  CVt CCt ConstYnor

+
+
+
+

++++++
+++=

  (1) 

In function (1), we added a new condition that is constrained 
for each factor in PW boundary to include co-articulation 
effect such as tone sandhi at the PW layer. Prefix C, P and F 
represent current, preceding and following syllable, 
respectively. Ct, Vt and Tt represents consonant, vowel and 
tone type, respectively. Subsequently, residuals Delta1 that 
could not be predicted by the syllable layer are then analyzed 
in the immediate higher layer.  
Figure 2 shows the distribution of Delta 1 (the residuals of the 
syllable layer) of the revised duration model from the speech 
data where the horizontal axis represents Breaks from B1 to 
B5, and the vertical axis represents the residual value from -2 
to 3. Significant difference (p-value<0.001) was found with 
respect to the durations between the distributions of B2 and 
those greater than B2, as well as between speakers, 
respectively. The results enabled us to avoid overestimating 
contribution of B2 from the PW Layer, thus we decided to 
add a constraint condition to only calculate f(PW) in the B2 
level.  
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Figure 2: Distribution of Delta 1 of the revised duration 

model for speakers F051P and M051P. 
The Revised PW Layer Model could be written as function 
(2): 



        2Delta  
level B2in  dconstraine is f(PW) ofn calculatio The 

Sequence)PW  Length,f(PW Delta1

+
+

=
   (2)                                                         

Delta2 that could not be predicted by the PW layer are 
assumed to be contributions from the immediate higher level 
and therefore are to be analyzed at the next layer upward 
subsequently. 
The PPh and BG Layer Models are the same as our previous 
models, written as function (3) and (4) respectively. 

3Delta                
 Sequence)PPh  Length,f(PPh Delta2

+
=                      (3)                                           

 4Delta                
 Sequence)PPh  Length,PPh  IMF,f(BG Delta3

+
=               (4)                                                

2.5. Revising the Intensity Model 

Based on the revised duration model, we used the same 
method to analyze the characteristics of the intensity 
parameter. Figure 3 shows the distribution of Delta 1 of the 
revised intensity model for both speakers where the 
horizontal axis represents Breaks from B1 to B5, and the 
vertical axis represents the residual value for -4 to 3. 
Significant difference (p-value<0.001) was also found with 
respect to intensity patterns between the distributions of B2 
and those greater than B2, as well as between speakers. 
Therefore, the same rationale of modification can be applied 
to the Revised Intensity Model as well. 
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Figure 3: Distribution of Delta 1 of the revised intensity 

model for speakers F051P and M051P. 

2.6. Revising the Pause Model 

In our previous pause model [7], we calculated the 
contribution of pauses from B1 to B4. However, we observed 
that the distribution of real pauses for B1 is very narrow and 
therefore decided contribution of B1 could be ignored in the 
revised model. Figure 4 shows the distribution of pauses from 
B2 to B4 for speakers F051P and M051P where the horizontal 
axis represents normalized pause value from -0.4 to 6, and the 
vertical axis represents frequency of distribution. 
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Figure 4: Distribution of Pauses as Boundary Breaks for 

speakers F051P and M051P. 
 
For the new pause model, the Revised PW Layer Model can 
be written as function (5): 

Delta1
level B2in  dconstraine is f(PW) ofn calculatio The 

Sequence)PW  Length,f(PW Ynor 

+
+

=
  (5)                          

Delta1 that could not be predicted by the PW layer are 
analyzed in the immediate higher layer subsequently. 
Further, we also analyzed the distribution of B3’s pauses in 
relation to punctuation marks in the text used. Punctuations 
comma, period and no punctuation in text in relation to B3 
occurrences in speech data were calculated for their 
respective distributions, as depicted in Figure 5. The results 
indicated that the value of the B3 pause was indeed affected 
by the presence of punctuation marks and that that the order 
of the mean values of B3 is period> comma> no mark. In 
other words, though both speakers did pause at where no 
punctuation marks appeared in text; the presence of 
punctuation marks did cause more B3 in the speech data. 
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Figure 5: Distribution of Pauses as Punctuation Mark in B3 

for F051P and M051P. 
According the result, we categorized three groups for 
punctuation mark by their means, so we can use punctuation 
marks as a feature at the PPh Layer Model, written as 
function (6) 

 2Delta                
Sequence)PPh  Length,PPh  Group, f(MarkDelta1

+
=        (6)                             

The BG Layer Model is the same as our previous model, 
written as function (7). 

 3Delta                
Sequence)PPh  Length,PPh  IMF,f(BG Delta2

+
=          (7)                             

3. Results 

3.1. Comparison of Duration Predictions 

Figure 6 shows the duration patterns of PW (1-4 syllables in 
length) along the temporal course by syllable number and by 
speaker from the previous model [7] while Figure 7 shows 
patterns from the current revised model. Each line represents 
the corresponding regression coefficient of one syllable at the 
specific position in a prosodic word. The horizontal axis 
indicates the position of each syllable and the vertical axis 
represents the coefficient of normalized values. From Figures 
6 and 7 we can see that the PW patterns from the previous 
model are opposite from patterns from the revised models. 
Note how the previous model showed final syllable 
lengthening of PW by syllable number and across speakers 
whereas the revised model showed the reverse, namely, final 
syllable shortening PW by syllable number and across 
speakers. The results from the revised model attribute less 
contribution from the PW layer to total output prediction in 
general. 
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Figure 6: The PW patterns of the previous duration model for 



speakers F051P and M051P. 
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Figure 7: The PW patterns of the revised duration model for 

speakers F051P and M051P. 
Figure 8 shows the duration patterns of PPh (6-11 syllables in 
length) along the temporal course by syllable number and by 
speaker from the previous model [7] while Figure 9 shows 
patterns from the current revised model. Instead of 
considering only one immediate neighboring syllable of 
annotated B3, i.e., one pre- and post-B3 syllable only, we 
defined immediate between-PPh neighborhood as the last 4 
syllables of a preceding PPh and the first 3 syllables of the 
following PPh. By this definition, PPh neighborhood is 
defined by units that would encompass boundary immediate 
PW rather than single syllables, a definition that better 
reflected the rationale of our HPG framework. Note that the 
cross-boundary contrast is more distinct in the revised model 
than that from the previous model.  
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Figure 8: The PPh patterns of the previous duration model for 

speakers F051P and M051P. 
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Figure 9: The PPh patterns of the revised duration model for 

speakers F051P and M051P.  
 

In addition, Figures 7 and 9 combined also show how patterns 
derived from the revised model are more contrastive in 
general than patterns derived from the previous model as 
shown in Figures 6 and 8. 

3.2. Comparison of Intensity Predictions 

Figure 10 shows the intensity patterns of PW (1-4 syllables in 
length) along the temporal course by syllable number and by 
speaker from the previous model while Figure 11 shows 
patterns from the current revised model. Similar to results 
from the revised duration model, the revised intensity 
prediction patterns at the PW layer are also opposite from 
previous predictions. Figures 12 and 13 show both the 
intensity distribution of PPh patterns from the previous and 
revised models; PPh’s ranged from 6 to 11 syllables. Note 
that the PPh patterns from the revised model decayed more 
drastically towards boundary, thus matching the tendency of 
the intensity attenuation for PPh final weakening, especially 
for speaker M051P. Once again the cross-boundary contrast is 
more pronounced from intensity predictions. Coupled with 
more phrase-final syllable lengthening found in Section 3.1, 
the prediction is closer to the physical speech data. Therefore, 
we believe the cross-boundary contrasts in both duration and 
intensity patterns are significant cues to boundary perception 

regardless of boundary pause duration. 
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Figure 10: The PW patterns of the previous intensity model 

for speakers F051P and M051P. 
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Figure 11: The PW patterns of the revised intensity model for 

speakers F051P and M051P. 
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Figure 12: The PPh patterns of the previous intensity model 

for speakers F051P and M051P. 
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Figure 13: The PPh patterns of the revised intensity model for 

speakers F051P and M051P. 

3.3. Comparison of Pause Predictions 

Due to space limit, we will present comparison of pause 
prediction from one speaker only. Figure 14 shows the 
comparison of predictions boundary pauses from the  
previous and revised models for speaker M051P where the 
horizontal axis represents the Break index of each syllable, 
and the vertical axis represents pause values from 0 to 750ms. 
We can see that the differences of pauses between the 
previous and revised models for B1 and B2 are greater 
because the previous pause model could be mistaken for 
contribution from lower Break levels. In the revised boundary 
pause model, since the contribution of B1 is about 0.4 ms 
which can not be perceived by the human ear, we ignored the 
contribution from B1 to refine the prediction of lower Breaks.  
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Figure 14: Comparison of the pause predictions between the 

previous and revised models for speaker M051P. 



3.4. Prediction Error Improvement 

Our analyses showed a reduction of overall T.R.E. by about 
20% from the previous model to the revised model. Table 2 
shows the Total Residual Error (T.R.E.) between the previous 
and revised models for both speakers Therefore, revising the 
previous model by including more boundary neighborhood 
state resulted in improved predictions than the previous model, 
indicating the current predictions deviated less from actual 
speech data.  

Table 2. T.R.E. for speakers F051P and M051P. 

F051P 
T.R.E. 

Previous Revised T.R.E. 
Reduction 

Duration 36% 32% 11% 
Intensity 54% 47% 13% 
Pause 32% 22% 31% 
Average 41% 34% 17% 
 
M051P 
T.R.E. 

Previous Revised T.R.E. 
Reduction 

Duration 33% 31% 6% 
Intensity 48% 41% 15% 
Pause 27% 13% 52% 
Average 36% 28% 22% 
 
We also noted why the T.R.E. of the intensity prediction is 
always higher than that of the duration prediction. Comparing 
the distribution of Delta 1 of the intensity model and that 
from patterns shown in Figures 2 and 3, one can see that the 
previous case has a broader distribution. It means that the 
variation of intensity is greater than that of duration, most 
notably F051P. The broader distribution of Delta 1, the 
greater the deviation is for the acoustic parameter. The pause 
prediction was increased effectively by ignoring the 
contribution of B1 and adding punctuation mark as a feature.  
Therefore, the order of prediction performance is pause> 
duration> intensity. 

3.5. Analysis of B3 Pauses Shorter than B2 Pauses 

As mentioned in Section I, the range of pauses for Breaks is 
very wide for B3, as plotted in Figure 4. Therefore, in 
addition to revising the prediction models above, we also 
studied B3 in more detail. We further analyzed the 
performances of duration and intensity predictions of 
between-PPh pause B3’s that are shorter than B2. These are 
cases that contradict the annotation definition but consistently 
perceived by transcribers. Accordingly, we defined two 
conditions to analyze short B3 pauses: 1. the lengths of the 
preceding and following PPhs are equal to or over 6 syllables. 
2. Maximum pause of B2 is used as B3’s threshold.  
The analysis of short B3 pauses for duration and intensity is 
depicted in Figure 15 and 16. In Figure 15 and 16, we chose 
to include the last 4 syllables of the preceding PPh at B3 and 
the first 3 syllables of the following PPh at B3 for analysis. 
Except for the first 3 syllables of the following PPh of 
intensity for M051P, there are significant differences between 
the preceding and following syllables of B3. These results 
also indicated that our previous model attributed more 
contribution from the lower PW layer to output prosody, 
whereas the revised model entails more contribution from the 
higher PPh layer instead. Since the revised model yielded 
better overall predictions, it is clear that more contribution 
from higher level information accounts for the speech data 

better, hence proving further the significance of higher level 
contribution to output prosody and how such information is 
perceived by the human ear.. 
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Figure 15: PPh Patterns of the Duration Model for F051P and 

M051P. 
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Figure 16: PPh Patterns of the Intensity Model for F051P and 

M051P. 

3.6. Analysis of B3 without Pause 

The above results also imply that boundaries between 
prosodic phrases within speech paragraphs could be signaled 
more by contrastive neighborhood prosodic state in duration 
and intensity patterns rather than by the physical duration of 
boundary pauses in the temporal domain. We also noted in 
the speech data that there are 7 and 18 tagged B3's without 
pause for speakers F051P and M051P, respectively. In other 
words, breaks are consistently perceived across transcribers 
when there is no silent pause in the speech signals. We 
studied these data and found the following phenomena may 
attribute to the perception of boundary B3: 1. there is final-
lengthening before B3, as depicted in Figure 17 and as 
specified in our syllable duration templates [2, 7]. 2. The 
between-B3-boundary F0 contrast may also have an effect, as 
depicted in Figure 18. Note when a new PPh begins after B3, 
F0 reset occurred whereas no reset occurred after the B2 
within the same PPh. Therefore, these cases indicated that the 
perception and judgment of B3 rely more on the integration 
of neighboring acoustic properties and from contrasts of 
neighboring states combined rather than on pause duration.  

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Pre4 Pre3 Pre2 Pre1 B3 Fol1 Fol2 Fol3

 
Figure 17: An Example for Final Lengthening. 



 
Figure 18: An example of  F0 Contrast. The left most B3 

occurred at a PPh end where a new PPh begins afterwards and 
ends by the second B3 from left. 

4. Discussion 
Instead of analyzing the duration and intensity patterns of one 
syllable before and after annotated PW and PPh boundary 
breaks in a previous model [5, 7], we analyzed B3’s boundary 
immediate prosodic states in terms of duration and intensity 
distribution along the time domain by PW (4 syllables before 
and 3 syllables after), compared them with those from 
immediate neighboring B2’s, and found different yet 
corresponding patterns in these two acoustic parameters. 
Accordingly, we included factors of duration and intensity to 
revise and fine-tune the linear regression model [7], and 
recalculated contribution predictions from the PW layer to 
final prosody output under the HPG framework. The Total 
Residual Error (T.R.E.) of duration and intensity at the PW 
layer is improved by 10%; overall prediction of output 
prosody is consequently improved by 5%. In addition, the 
layered predictions are now more consistent with the actual 
break distribution in the speech data, 
Based on the above results, we believe that a detailed analysis 
of residual distributions of every prosodic layer (from syllable 
to PPh) can yield more stable and general patterns that lead to 
better prediction.  In Figures 6 and 10, duration and intensity 
patterns at the PPh layer yielded clearer evidences that the 
coefficients of the last 4 syllables are similar irrespective of 
PPh lengths (from 6 to 11 syllables). Thus it became clear 
that to the human ear, PW boundary break B2’s and PPh 
break B3’s can be distinguished from each other not by pause 
duration alone, but by contrastive neighborhood prosodic 
states as well. Evidence of boundary neighboring F0 contour 
patterns also showed similar results. Our analyses also 
showed how contrasts were constituted more by higher level 
constraints from discourse information than by lower level 
concatenation smoothing. To the human ear, it is clear that B2 
and B3 boundaries are within- rather than between-paragraph 
signals; their respective pause duration less relevant.  
The results enable us to better predict B3 and further argue 
that prosodic states relate more to higher level information; 
fluent speech prosody is more than lower level co-articulation 
driven smoothing.  

5. Conclusions 
We believe the above results definitely offer alternative 
rationale for automatic segmentation of fluent speech and 
speech recognition of Mandarin Chinese in general, 
especially to the most commonly adopted approach focusing 
on individual syllabic tone identities and F0 contour patterns, 
and perhaps inadvertently disregarding boundary as well as 
higher level information. The improved model can also be 
incorporated to enhance prosody output of speech synthesis, 
showing where boundary breaks CAN vary greatly to yield 

more natural prosody. Last but not least, though we drew 
evidences from Mandarin Chinese, we believe boundary 
properties in relation to higher level discourse information are 
not at all language specific. 
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