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Abstract—This paper presents a set of corpus-based
text-to-speech synthesis technologies for Mandarin Chinese.
A large speech corpus produced by a single speaker is used,
and the speech output is synthesized from waveform units of
variable lengths, with desired linguistic properties, retrieved
from this corpus. Detailed methodologies were developed for
designing “phonetically rich” and “prosodically rich” corpora
by automatically selecting sentences from a large text corpus to
include as many desired phonetic combinations and prosodic
features as possible. Automatic phonetic labeling with iterative
correction rules and automatic prosodic labeling with a multi-pass
top-down procedure were also developed such that the labeling
process for the corpora can be completely automatic. Hierarchical
prosodic structure for an arbitrary desired text sentence is then
generated based on the identification of different levels of break
indices, and the prosodic feature sets and appropriate waveform
units are finally selected and retrieved from the corpus, modified
if necessary, and concatenated to produce the output speech.
The special structure of Mandarin Chinese has been carefully
considered in all these technologies, and preliminary assessments
indicated very encouraging synthesized speech quality.

Index Terms—Automatic labeling, Mandarin Chinese, prosody,
synthesis, text-to-speech.

I. INTRODUCTION

T EXT-TO-SPEECH (TTS) synthesis technology for con-
verting an arbitrary text into corresponding speech signals

has been successfully developed for a long time. Significant im-
provements in this area have been observed in the past decades.
In recent years, the overwhelming developments of Internet ser-
vices as well as wireless personal communications have created
a completely new environment for TTS applications. For ex-
ample, it is highly desirable for people to listen to e-mails or
Web pages read by TTS technology over mobile handsets at any
time, from anywhere, if the TTS synthesized speech quality is
good enough. In fact, the rapidly increasing demand for TTS
technology also leads to higher requirements for the intelligi-
bility and naturalness for TTS synthesized speech. When the
contents of the texts to be read by TTS technology are of high
importance (e.g., personal e-mails) or high diversity (e.g., Web
pages) and the synthesized speech is to be listened to by large
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number of users, it is often found that the capabilities of the
available technology are still limited. The ultimate goal of true
naturalness of synthesized speech seems not easy to achieve
today, specially for the case of general domain applications, al-
though very often it is believed that this goal is already very
close [1].

Among the many developments in TTS technology im-
provements, the new paradigm of “corpus-based approaches”
is clearly important. In this paradigm, the synthesized speech
is not obtained by concatenating modified versions of voice
units pre-stored in a database. Instead, a large speech corpus
(on the order of 10 h, or even much more, of speech) produced
by a single speaker is collected. The corpus is designed so
that almost all linguistic and prosodic features for the target
language (either for general domain or specific domain) have
been included. Parallel analysis of all prosodic and linguistic
features of the speech signals as well as the corresponding texts
can lead to a much better prosodic model. There can be many
repetitions of a given voice unit in the corpus, but in different
context with different prosodic features. During the synthesis
process, the most appropriate units of variable lengths, with the
desired prosodic features within the corpus, are automatically
retrieved and selected on-line in real-time, and concatenated
(with modifications when necessary) to produce the output
speech. By doing this, very often longer units (especially
commonly used words or even phrases) can be used in the
synthesis if they appear in the corpus with desired prosodic
features. Also, by doing this the need for signal modification
to obtain the desired prosodic features for a voice unit, which
usually degrades the naturalness of the synthesized speech, is
significantly reduced. This is why much better performance
can be achieved using this approach [2]–[4].

For TTS technology for Mandarin Chinese, great efforts have
been made in the past decades as well, and many successful
systems have been developed [5]. Considering first the text
analysis part, one early system [6] simply synthesized the
speech directly from phonetic transcription input without
handling the text analysis. The earliest system including
text analysis functionality may have appeared around 1989
[7]. By the mid-1990s there were many systems that could
read Chinese text directly [8]–[11]. The major problems in
text analysis include word segmentation (because there are
no blanks between words in Chinese texts serving as word
boundaries) and part-of-speech (POS) tagging. In most cases
simple heuristic rules or statistical models were used for these
two tasks, although some special algorithms were also applied
[9], [12].

As for prosodic models in TTS for Mandarin Chinese, both
rule-based [6], [13] and statistics-based [14], [15] approaches
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have been useful. The former needs expert knowledge and so-
phisticated handcrafted efforts, while the latter can achieve sim-
ilar results by training with appropriately labeled speech cor-
pora. Because both the available quantities and processing ca-
pabilities for speech corpora have been growing rapidly since
1990s, statistics-based approaches have been getting more and
more attractive and popular in recent years. However, the lack of
a good prosodic model for Mandarin Chinese remains a major
difficulty. Although some important results have been obtained,
primarily focused on the tone Sandhi and related problems [16],
[17], the need for a useful prosodic labeling system for Man-
darin Chinese like ToBI [18] for English is quite clear. Because
Mandarin Chinese is a tonal language for which the tone has
lexical meaning, the prosody is specially important for TTS syn-
thesis, not only for the naturalness, but for intelligibility as well.

Regarding the choice of the voice units for synthesis in TTS
for Mandarin Chinese, the syllable was popularly used starting
in early years [6] due to the monosyllabic structure of Mandarin
Chinese, i.e., each Chinese character is pronounced as a mono-
syllable, while a Chinese word is composed of one to several
characters (or syllables). Such syllable-sized units can perfectly
model the intra-syllabic coarticulation, but not that across syl-
labic boundaries. The di-phone units commonly used in most
western languages were also found useful [9]. The corpus-based
approaches mentioned above have led to many methods for se-
lection of appropriate voice units from large speech corpora
[19]–[21]. The essential points for these methods are nonuni-
form units, multiple candidates, and on-line selection. But as yet
such methods have only been used by very few systems for Man-
darin Chinese [22]. Considering basic synthesis methods in TTS
for Mandarin Chinese, both the vocal tract model approaches
[9], [23] and waveform-based approaches [8], [11], [24] have
been used for some time. Waveform-based approaches produced
more intelligible speech if only minor prosodic modifications
and spectral transitions were needed. The vocal tract model, on
the other hand, allowed more significant prosodic modifications
and smoother spectral transitions, but produced slightly less in-
telligible speech.

In this paper, a new set of text-to-speech synthesis technolo-
gies for Mandarin Chinese is presented. Detailed methodologies
were developed for designing “phonetically rich” and “prosod-
ically rich” corpora by automatically selecting sentences
from a large text corpus to include as many desired phonetic
combinations and prosodic features as possible. Automatic
phonetic labeling with iterative correction rules and automatic
prosodic labeling with a multi-pass top-down procedure were
also developed such that the labeling process for the corpora
can be completely automatic. Hierarchical prosodic structure
for an arbitrary desired text sentence is then generated based
on the identification of different levels of break indices, and
the prosodic feature sets and appropriate waveform units are
finally selected and retrieved from the corpus, modified if
necessary, and concatenated to produce the output speech. The
special structure of Mandarin Chinese has been carefully con-
sidered in all these technologies, and preliminary assessments
indicated very encouraging synthesized speech quality. In the
following, the corpus design is presented in Section II, and the
automatic phonetic and prosodic labeling for the speech corpus

TABLE I
(a) 21 INTIALS OF MANDARIN SYLLABLES AND

(b) 40 FINALS OFMANDARIN SYLLABLES

in Sections III and IV, respectively. Automatic generation of
the prosodic structure for an arbitrary input text sentence is
then described in Section V, while selection, modification and
concatenation of the waveform units to produce the output
speech is discussed in Section VI. The prototype system and
preliminary performance assessments are finally given in
Section VII. Section VIII is the concluding remarks.

II. CORPUSDESIGN AND LABELING SYSTEMS

Good corpus-based TTS technology relies on the availability
of a good corpus which carries all desired phonetic as well as
prosodic features for the target language and the target task, such
that good prosodic models, linguistic properties and synthesis
units can be derived. If the size of the corpus could be infinite,
no corpus design would ever be needed since everything could
be included. However, when only a very limited size of corpus
is achievable, careful design of the corpus becomes very impor-
tant. In this research, two corpora were developed, one “phonet-
ically rich” and one “prosodically rich.” Both of them have texts
selected by some automatic algorithms but with different selec-
tion criteria from the Academia Sinica Balanced Corpus [25],
which is a “balanced” (in the sense of topic domains, styles,
genres, media sources, etc.) Chinese text corpus.

The purpose of the “phonetically rich corpus” is to include
as many phonetic combinations, including intra-syllabic and
inter-syllabic structures, as possible in a corpus of accept-
able size. Chinese syllables are conventionally described in
INITIAL/FINAL format very similar to the CV structure
for syllables in other languages. Here INITIAL is the initial
consonant of a syllable, and FINAL is the vowel (or diphthong)
part plus optional medials and nasal endings. The total number
of INITIALs and FINALs are, respectively, 21 and 40. The 21
INITIALs and 40 FINALs for Mandarin syllables are listed
in Table I(a) and (b), respectively, in International Phonetic
Alphabet (IPA). More detailed discussions about these INI-
TIALs and FINALs as well as Mandarin syllables are referred
to earlier literature [26], [27]. The phonetically rich corpus thus
should include all possible syllabic INITIAL–FINAL structures
considering phonotactic constraints, and as many FINAL–INI-
TIAL or FINAL–FINAL (for the case that the second syllable
does not have an INITIAL) combinations as possible for
cross-syllabic features. In addition, Mandarin Chinese is a tonal
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language and each syllable is assigned a tone. There are a total
of four lexical tones plus a neutral tone. It is therefore desired to
have all possible syllable-tone combinations, plus all possible
tone concatenation combinations including the tone Sandhi
variations. All these criteria were entered into a word/sentence
selection algorithm [28] to be performed over the Academia
Sinica Balanced Corpus. The result is a word database and
a paragraph database. The former consists of the 1455 most
frequently used 1-, 2-, 3-, and 4-syllabic lexical items cov-
ering 338 tonal combination patterns and 1351 inter-syllabic
combinations, and the latter consists of 400 paragraphs made
up of frequently used words covering 289 tonal combination
patterns and 1434 inter-syllabic combinations. Not all desired
combination patterns are present in these two databases, but it
is believed that those which are absent should be rarely used,
because they apparently did not appear in the Academia Sinica
Balanced Corpus.

The purpose of the “prosodically rich corpus,” on the other
hand, is to include more prosodic behavior of Mandarin Chinese
which may not be well covered by the above “phonetically rich
corpus.” This is much more challenging because the prosody
of Mandarin Chinese has not yet been well studied. Four forms
of intonation [29] or 13 types of intonation based on different
speaker attitudes [30] were developed in the early literature,
while later studies analyzed the intonation in Mandarin speech
according to three modalities of utterances, i.e., interrogative,
exclamatory, and declarative [31]. The design of the “prosodi-
cally rich corpus” was based on these three modalities of intona-
tion [32]. The interrogative sentences were classified into four
groups and the exclamatory sentences into three groups [33],
both based on the existence of some words or word patterns in
the sentences. So sentences of these modalities can be selected
from the Academia Sinica Balanced Corpus using punctuation
marks plus these words or word patterns. For example, at the
time this research was performed, a total of 280 000 sentences
in the Academia Sinica Balanced Corpus were well tagged with
manual correction. The tags include 44 parts-of-speech and ten
punctuation marks. Out of the 280 000 sentences, 8350 ending
with question marks and 5471 with exclamation marks were
first automatically extracted as candidates for interrogative sen-
tences and exclamatory sentences. Further selection was then
performed with these candidates based on specific words or
word patterns. The result is a set of 550 interrogative sentences
and 300 exclamatory sentences to be used in the “prosodically
rich” corpus.

The selection of declarative sentences, on the other hand, was
much more difficult, since no prior studies can be found in the
literature. In this research, it was assumed that the prosodic
structures of declarative sentences may have to do with the con-
catenation patterns of parts-of-speech and punctuation marks,
which have been well tagged on the Academia Sinica Balanced
Corpus. In that sense the bigram/trigram coverage for concate-
nation patterns of parts-of-speech and punctuation marks may
be a reference parameter for selection. Therefore the declara-
tive sentences were selected by an algorithm trying to maxi-
mize such bigram/trigram coverage. The selection algorithm is
described here. The score for each bigram/trigram item is de-
fined proportional to the inverse of its count in the corpus. In

otherwords, the less frequently a bigram/trigram item appears
in the corpus, the higher priority it has to be selected. In this
way the bigram/trigram coverage can be maximized with min-
imum number of sentences. If the count is too small (less than a
chosen threshold), then the score of that bigram/trigram item is
set to zero. This is to avoid including unreliable items. The score
of a sentence is then the sum of the scores of all bigram/trigram
items in the sentence, normalized to the number of characters.
The sentence with the highest score in the corpus was then se-
lected first automatically. After a sentence is selected, the scores
of all the bigram/trigram items in the selected sentence are au-
tomatically set to zero, i.e., these bigram/trigram items are not
desirable any more. The scores of all sentences are then recal-
culated and the sentence with the highest score is selected. This
is again the way to maximize the bigram/trigram coverage with
minimum number of sentences. This process is repeated iter-
atively. The result is a set of 800 declarative sentences. These
800 sentences plus the 300 exclamatory sentences and 550 inter-
rogative sentences selected based on words or word patterns as
mentioned in the above together formed the sentence set for the
“prosodically rich” corpus. Although there does not exist any
direct proof that the sentences selected in this way really cover
the prosody of Mandarin Chinese reasonably well, at least it was
observed that the sentences in this database really include many
different prosodic patterns.

While recording the speech corpora, for each of the “pho-
netically rich” and “prosodically rich” databases six speakers
were asked to produce the speech in read speech mode, but as
naturally as possible. The six speakers for either database in-
clude three males and three females in three age groups: 20–35,
35–50, and 50 and above. The six speakers producing the speech
for the two databases were completely different, except one
speaker in common. So there were 11 speakers in total, and there
was one speaker who produced both the “phonetically rich” and
“prosodically rich” corpora. The “phonetically rich corpus” in-
cludes a total of more than 18 h of speech, while the “prosodi-
cally rich corpus” includes more than 31 h of speech. The speech
corpora of a total of roughly 50 h of speech here produced by 11
speakers were for various research purposes. For the research of
corpus-based TTS synthesis technologies to be presented below,
only the data produced by the single speaker who produced both
the “phonetically rich” and “prosodically rich” corpora were
used for consistency in prosodic and phonetic properties. So all
the experimental data described below are based on the speech
of this speaker of roughly 8 h, which is also the synthesis inven-
tory used in the final TTS system. This speaker is male, who is
a teacher in a university at Taipei, whose job is to teach students
to speak in accurate Mandarin Chinese.

The collected speech corpora need a good phonemic
transcription system and a good prosodic labeling system. A
SAMPA-T phonemic transcription system following the general
design principles of the SAMPA system [34] but considering
the phonetic characteristics of Mandarin Chinese as well as
a few local dialects spoken in Taiwan was developed [35].
In addition, a prosodic labeling system following the general
design principles of the ToBI system [18] but considering the
prosodic characteristics of Mandarin Chinese was developed,
in which the prosodic features are represented by break indices
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and emphasis levels at the moment [36]. The break indices are
marked at the end of each syllable with a value from 0 to 5 to
characterize the following six categories of boundaries:

B0: reduced syllabic boundary;
B1: normal syllabic boundary;
B2: minor phrase boundary;
B3: major phrase boundary;
B4: breath group boundary;
B5: prosodic group boundary.

The emphasis levels range from zero to three. The break indices
were extensively used in the following TTS technology, while
the emphasis levels have not been used as yet.

III. A UTOMATIC PHONETIC LABELING

FOR THESPEECHCORPORA

Two levels of labels for the speech corpora are needed for
TTS synthesis, phonetic labels and prosodic labels. Both levels
of labeling were made completely automatic in the proposed
technologies [37]. In other words, no human corrections were
needed at all. As will be clear later on, although some errors
may be inevitable in the completely automatic processes, the
final tests showed such errors are in fact negligible or accept-
able, and the completely automatic labeling processes are actu-
ally adequate to a good extent. Automatic labeling is definitely
needed not only because the quantity of the data is huge and
manual labeling is simply impossible, but because automatic la-
beling is the only approach to achieve consistency in labeling,
which is the key for good synthesis results. Automatic labeling
also makes it possible to synthesize the voice of any new speaker
very quickly, as long as the corpora for the desired new speaker
are available. In this section automatic phonetic labeling is pre-
sented, and automatic prosodic labeling is to be described in the
next section.

For automatic phonetic labeling, a phonemic transcription of
the speech data is used as the input. The possible pronuncia-
tions of the words in each sentence were derived using a text
analysis module (because the pronunciation may depend on the
context), including establishing a set of possible pronunciations
for each word, and converting the results into HTKs [39] net
format. These net files include the homographs and the pronun-
ciation variations. A Viterbi process is then performed to recog-
nize and align the speech data based on the net. The units for the
hidden Markov models (HMMs) used here are context indepen-
dent INITIALs and FINALs. The INITIAL models have three
states each and the FINAL models have five states each. The
feature vectors include 12 dimensions of Mel-frequency cep-
stral coefficients (MFCC), one dimension of root mean square
(RMS) power and their differential values. The frame rate is
5 ms for better alignment precision. In a conventional phonetic
labeling procedure as illustrated in the left part of Fig. 1, the
speaker independent (SI) HMMs were used to perform a rough
alignment for the initial training of the speaker dependent (SD)
HMMs. The parameters of the SD HMMs can then be further
re-estimated with an embedded Forward–Backward algorithm.
The Viterbi process then produces the final alignment with these
final SD HMMs.

The results for the above conventional approach were not ac-
curate enough for the Mandarin speech data used here, at least

Fig. 1. Automatic phonetic labeling with iterative correction rules.
(a) Conventional approach and (b) the approach used here.

for the purposes of TTS synthesis. During the manual correction
of the alignment results, it was found that most of the errors can
be classified and corrected with some phonetic rules. An algo-
rithm for postprocessing the output label files with such rules
was therefore developed [38]. The adjusted results were then
applied to re-estimate the parameters of the SD HMMs. This
procedure was repeated iteratively to fine tune the models. The
block diagram is illustrated in the right part of Fig. 1, in which
the re-estimation process in the left part of the figure is replaced
by an iterative procedure including Viterbi alignment, correc-
tion and training. The input of the block diagram is the speech
signal and its transcription net file; while the output is the INI-
TIAL/FINAL sequences with the corresponding boundary po-
sitions.

The correction rules mentioned above were based on a set of
acoustic features and the phonetic classes of the voice segments
in the local vicinity of the Viterbi alignment boundaries. The
acoustic features used here include RMS power, voicing prob-
ability and subband energies derived from FFT. The window
size used for obtaining these features varied from 5 ms to
20 ms for different features and different phonetic classes for
the voice segments. The voice segments were categorized into
seven phonetic classes: silence, nasal, liquid, fricative, plosive,
affricate and vowel. Different rules were developed for different
concatenations of these phonetic classes, such as: (nasal)
(vowel), (vowel) (fricative), etc. Two examples which have
been shown to be the most successful correction rules are
described below. The first example is (silence)(affricate).
The RMS power with 5 ms window size was applied to locate
the affricate. Because there is a short burst of energy when the
sound is released, the boundary can be more precisely decided
with the sharp increase of the RMS power. The second example
is (vowel) (fricative). The voicing probabilities derived by
the ESPS tool were used here to locate the boundary more
precisely. In the original alignment, the ending of the vowel
was very often taken as a part of the following fricative. With
the correction rule, the boundary can be shifted to the right
position. These two example correction rules are very useful.
There are some other rules in addition to these two, but there do
not necessarily exist correction rules for all the combinations of
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TABLE II
TEST RESULTS FOR THEAUTOMATIC PHONETIC LABELING PROCESS AND THEHUMAN LABELING RELIABILITY

phonetic classes. For some combinations the Viterbi alignment
boundaries are already quite accurate and no more corrections
are needed.

For evaluation of the performance of the labeling process, a
small set of speech data produced by the single speaker men-
tioned previously was tested. It included 130 min (500 para-
graphs) of speech for training and 30 min (100 paragraphs) of
speech for testing. A set of manually labeled data generated by
a single human labeler was used as the reference. The boundary
errors are defined as the difference between the aligned bound-
aries and the reference boundaries. The alignment accuracy is
then defined as the percentage of boundary errors within 10 ms
and 20 ms. The evaluation results are listed in the first two
columns of Table II. It can be found that without the boundary
correction rules, the mean boundary error was 14.2 ms, and the
alignment accuracies were 66.3% and 91.2% within 10 ms and
20 ms, respectively. By retraining the HMMs with the boundary
correction rules, the mean boundary error was reduced to 8.3 ms,
and the alignment accuracies within 10 ms and 20 ms improved
to 78.4% and 96.5%, respectively. The results here are those for
all the iterative correction rules being terminated after five itera-
tions. This number of five iterations was determined empirically,
simply based on the observation that no further improvements
as compared to those in Table II could be obtained if any indi-
vidual correction rule was iterated more times while all other
rules were terminated after five iterations. In the test no classi-
fication errors were assumed, and the classification consistency
was not even checked. This is because this is basically an align-
ment problem and it is reasonable to consider all the given pho-
netic transcriptions to be correct. Another good question is the
reliability of the reference, or whether the labels generated by
the single human labeler is accurate enough. A second human
labeler was asked to do the same labels for the 30 min of testing
speech. Comparison between the labels generated by the two
human labelers gave the data in the right column of Table II.
There apparently existed some nonzero mean boundary errors,
but significantly smaller than that produced by the automatic
labeling processes. Therefore the alignment accuracy of human
labelers was apparently not perfect. More test results regarding
how the overall synthesized speech quality is dependent on the
techniques discussed here will be presented later on in Sec-
tion VII.

IV. A UTOMATIC PROSODIC LABELING

FOR THESPEECHCORPORA

In this research, only break indices were automatically la-
beled at the end of each syllable. A feature vectoris generated

at the end of each syllable, and a break index(ranging from B0
to B5 as mentioned previously) should be labeled accordingly.
Therefore the task here is to map a sequence of prosodic feature
vectors ( ) for an utterance of syllables into a se-
quence of prosodic labels ( ) [37], [40]. The feature
vectors used here will be explained below. This process has been
performed in earlier studies [41] with a hidden Markov model
based on a simplified assumption that the current label is de-
pendent only on the previous label. However, according to our
experiences of manual prosodic labeling of Mandarin speech, it
seemed that such dependency is more on the upper level unit
rather than on the previous label, i.e., labeling of B4 (for a
breath group) is more dependent on the locations of B5 indices
(for prosodic groups), labeling of B3 more dependent on B4
indices, etc. Because of such possible hierarchical structure of
prosody in Mandarin Chinese, we chose to use a multiple-pass
top-down procedure for labeling of break indices. The algorithm
includes two principal components. The feature extraction com-
ponent transforms the various sources of information (the pho-
netic transcription, pitch-extraction results, etc.) into a time-or-
dered sequence of feature vectors ( ). The feature
vectors are then classified by decision trees in a multiple-pass
hierarchical phrasing component. The multiple-pass procedure
is simple. We only identify the location of one level of break
indices each time and the sequence is from B5 to B1, i.e., first
locating B5, then B4, then B3, etc. This procedure is illustrated
in Fig. 2.

The features used to construct the feature vectorsand de-
termine the break indices are listed in Table III. The first feature
is the pause duration, if any. The next three classes of features
are then derived from basic acoustic features: duration, energy,
and . All these parameters were normalized and the-score
values [i.e., shifted to be zero-mean and normalized to the stan-
dard deviation, ] were used. Another class of
important features is derived from the position of the boundaries
for the various units. The information includes the duration of
the upper level unit (for example the prosodic group defined by
B5 when determining B4 for a breath group), and the distance
of the current boundary from the beginning and the end of the
upper level unit. These features are measured both in seconds
and in number of syllables. The features mentioned above are
all derived from the acoustic information. Additional features
can be derived from the corresponding text transcription. The
locations of punctuation marks can be directly copied from the
text. They are very useful for identifying B4 and B5. The word
boundary is also very helpful, which can be obtained using a
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Fig. 2. Multipass procedure for automatic prosodic labeling.

TABLE III
THE SET OF FEATURESUSED TOPERFORM THEAUTOMATIC PROSODIC

LABELING

word segmentation program. This program identifies the word
boundaries automatically from a string of Chinese characters
(since there are no blanks between words in Chinese texts). In
this research, the word segmentation program developed earlier
in research of Chinese natural language processing was directly
adopted. Most of the syllabic boundaries within a word are B1.
Only these two features, punctuation marks and word bound-
aries, derived from text transcription were used in this research,
although more information will probably be helpful.

Some investigation with respect to human labeling reliability
was performed first [42], [43]. 100 paragraphs of speech cor-
pora were used in this preliminary test. Table IV is the com-
parison of the break indices labeled by two different human la-
belers A and B. Table IV(a) presents the independent labeling
results of the two labelers based on the proposed criteria; while
Table IV(b) presents the labeling results of the same set of data
after the two labelers compared their individual notes of labeling

criteria used. We found that although the consistency between
labelers was improved after the discussion, the less identifiable
categories remained unchanged. Most of the inconsistency oc-
curred in B1 versus B2 and B4 versus B5. Even after the dis-
cussion [in Table IV(b)], a total of 204 boundaries were labeled
as B1 by labeler A, but as B2 by labeler B. Also, 48 boundaries
were labeled as B5 by labeler A but as B4 by labeler B. This may
imply that labeler A is more sensitive to global prosodic changes
and labeler B is more sensitive to finer local prosodic changes.
In any case, the reliability in human labeling is an important
issue, as was previously discussed in other research works for
other languages [42], [43]. For the tests for automatic prosodic
labeling to be described below, only the indices labeled by the
labeler B were used in both training and testing for consistency
purposes.

The tests for automatic prosodic labeling were performed
with a database of 599 paragraphs produced by the single male
speaker, 399 for training and 200 for testing. In the first ex-
periment, only features derived from acoustic information were
used, and in the second experiment the second type of features
derived from transcribed texts (punctuation marks plus word
boundaries) were also included. Table V(a) and (b) are the con-
fusion matrices for the automatically obtained labels with re-
spect to manual labels for these two experiments. The average
error rate is, respectively, 20.3% and 15.1%. The confusion can
be effectively reduced with the text derived features, as can be
observed from Table V(a) and (b). This verifies the text infor-
mation is helpful for prosodic labeling. By comparing the la-
beling accuracy (the diagonal elements) between Tables IV(b)
and V(b), it is interesting to see that human labeling is not nec-
essarily always better than automatic labeling. For example,
81.7% of automatically labeled B2 indices were consistent with
the human labeler B, but only 64.3% of B2 indices labeled by
the human labeler A were. Similarly for B3 (81.2% for auto-
matic labeling and 78.8% for human labeler A). Although such
comparison may not be rigorous because the testing paragraphs
are different, but this indicated the accuracy achieved by the
automatic processes presented here is reasonable. The possible
reason is that the machine may be able to learn the consistency
for labeling, while human labelers really have different indi-
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TABLE IV
THE BREAK INDICES LABELED BY TWO LABELERS (A AND B) (a) BEFORE AND (b) AFTER

THE EXCHANGE OF THEIR INDIVIDUAL NOTES FORLABELING

TABLE V
CONFUSIONMATRICES FORAUTOMATIC LABELING OF BREAK INDICES WITH RESPECT TOMANUAL LABELS: (a) EXPERIMENT 1 WITHOUT USING THE TEXT

DERIVED FEATURES, AND (b) EXPERIMENT 2 USING THE TEXT DERIVED FEATURES

vidual perception sensitivities. More test results regarding how
the overall synthesized speech quality is dependent on the tech-
niques discussed here will be presented later on in Section VII.

V. AUTOMATIC GENERATION OFHIERARCHICAL PROSODIC

STRUCTURE FORTAGGED TEXT SENTENCES

For any input text sentence, converting it into the corre-
sponding prosodic structure including various levels of groups,
phrases, and break indices will be a key for synthesizing
speech signals with good naturalness and intelligibility. In this
research, this is achieved hierarchically, just as the process
that identified the break indices from the upper level units one
by one, as discussed previously [44], [45]. Because a Chinese
sentence is a string of characters without blanks indicating
the word boundaries, the input text sentence needs to be first
segmented into words. The segmented words should then be
tagged with the corresponding parts-of-speech. These processes
of word segmentation and parts-of-speech tagging have been
well studied [46], [47] and in this research such processes
are adopted directly. Although syntactic structure of or even
semantic knowledge about the sentences are certainly helpful

in prosodic analysis, they require the input sentences to be
properly parsed, and the cost is relatively high. In this research,
it was found that prosodic phrasing simply based on statistical
analysis of part-of-speech tags can in fact produce reasonably
well synthesized speech [45]. This will be discussed in this
section.

The analysis started with a total of 44 Parts-of-Speech (POSs)
primarily derived from early studies on Chinese natural lan-
guage processing [48]. Because it is possible that not as many
as all the 44 POSs are directly relevant to prosodic structures
studied here, it may be reasonable to cluster these 44 POSs into a
smaller number of groups. Such clustering may also increase the
number of samples in each group to be used in the following sta-
tistical analysis. Three different approaches for grouping these
POSs were considered. The first approach, referred to here as
syntactic grouping, used syntactic knowledge from human ex-
perts for clustering, and a total of 26 groups of POSs was de-
rived. The second approach, referred to as text-corpus grouping,
was based on the statistical behavior of the 44 POSs in the text
corpus. In this approach, a feature vector was defined for each
POS, whose components were the normalized frequency counts
of all the preceding and following POSs in the texts of the speech
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Fig. 3. An example of “minor phrase lattice.”

database designed as mentioned previously. These feature vec-
tors were then vector quantized and clustered, and a total of
18 groups was obtained. Neither of the above two approaches
used prosodic information from the speech corpus. The third
approach, referred to as speech-corpus grouping here, tried to
use some prosodic information from the speech corpus. In this
approach, a number from 0 to 5 (0 for B0, 1 for B1, … 5 for B5)
was first assigned to each break index. For each POS, the mean
values of these numbers were then evaluated for the two bound-
aries on both sides of all the words corresponding to the POS in
the speech corpus. These mean values were finally added to the
feature vectors of the POSs constructed in the second approach.
The rest of the third approach is almost identical to the second
approach, and a total of 18 groups was obtained. The relative
effectiveness of these three approaches will be tested in the ex-
periments to be discussed later on.

According to the six levels of break indices mentioned pre-
viously, B0 almost does not exist in the speech corpus of read
speech used here, and B1 is marked at the end of each syllable
(or character). So the first important lower level index is B2 and
the unit between two B2 indices is the “minor phrase.” After
the POSs were classified as discussed above, the patterns for the
groups of POSs within a “minor phrase” (for example: ,

, , etc.) between two B2 indices recorded in
the speech corpus labeled previously were collected and used to
construct a “minor phrase table.” Frequencies of occurrence in
the speech corpus for all these patterns of “minor phrases” were
also recorded in the table.

The identification of the B2 indices and the “minor phrases”
for an arbitrary text sentence based on the above “minor phrase
table” can be achieved as follows. The text sentence is first
segmented into a sequence of words with POSs tagged. This
POS sequence is then matched with those POS patterns in the
“minor phrase table.” Because very often there can be more than
one way to segment the sentence into such “minor phrases” as
those listed in the “minor phrase table,” a lattice of possible
“minor phrases” for the sentence can be constructed. A typ-
ical example of such a lattice can be found in Fig. 3. A dy-
namic programming procedure is then used to determine the
best path in the lattice based on the scores obtained from the fre-
quencies of occurrence of the “minor phrases.” Longer “minor
phrases” are preferred in this procedure and weights for higher
priority are given. This is based on the experiences that longer
phrases very often represent more probable structures. After the
“minor phrases” and B2 indices have been determined from the

best path obtained above in this way, the construction of “major
phrases” between two B3 indices can be performed in a similar
way with a second dynamic programming procedure based on
a table of “major phrase” patterns and the associated frequency
scores. This process can then be repeated to identify B4 indices
and so on, so as to construct all levels of prosodic phrases hier-
archically bottom-up. B5 indices, on the other hand, are directly
identified from the punctuation marks.

Some experiments were performed to test the effective-
ness of the above approaches. 599 paragraphs in the speech
corpus were tested, 500 for training and 99 for testing. First,
the three different POS grouping methods mentioned above
were compared, and the results of labeling accuracy with
respect to manual labeling for B2, B3, B4 all together are
listed in Table VI(a). From the table, it can be seen that the
speech-corpus grouping including the information derived
from the speech corpus achieved the highest accuracy. This
may imply that it is not easy to predict precisely the prosodic
phrases from the syntactic structures only. In fact, similar to
experiences with other languages, it was found in this research
that the prosodic phrase breaks do not necessarily coincide with
the syntactic phrase boundaries, and the relationship between
prosody and syntax is still not yet well understood. The detailed
confusion table for the obtained break indices was listed in
Table VI(b). It can be seen from Table VI(b) that the B2 indices
could be identified with the highest accuracy of 85.7%, and
even for the worst case of B4 indices, an accuracy of 78.7%
was achieved. Unfortunately, it is not easy to compare the
performance with other reported results [49], [50] due to the
differences in the languages and the corpora used. An important
consideration in evaluating the approach is that the prosodic
phrase structure of a given text sentence is not necessarily
unique. A human speaker can easily produce a sentence in
several different ways without altering the naturalness or the
meaning. There are still many questions unanswered in this
area. More test results regarding how the overall synthesized
speech quality is dependent on the techniques discussed here
will be presented later on in Section VII.

VI. V OICE UNIT SELECTION AND CONCATENATION

When the prosodic phrase structure for an arbitrary input
text sentence is obtained as described above, the next process
is to select the appropriate voice units from the speech corpus
and concatenate these units together to obtain the synthesized
speech waveform [51]–[53]. This is discussed in this section.
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TABLE VI
TESTING RESULTS FORAUTOMATIC GENERATION OFBREAK INDICES FROM

TAGGED TEXTS: (a) LABELING ACCURACY FORDIFFERENTPOS GROUPING

APPROACHES, AND (b) DETAILED CONFUSIONTABLE AMONG B2, B3
AND B4 FOR SPEECH-CORPUSGROUPING

First, an indexing file was generated for each INITIAL/FINAL
unit in the speech corpus to be used for selection and synthesis.
Two sets of information were included in the file. The first is
the linguistic/symbolic features such as the phonetic identities,
tonal identities, and other position and contextual information
including those with respect to different levels of break indices
in the prosodic structure. These linguistic/symbolic features are
listed in Table VII. Some of these features have to do with the
segmental properties of the units, some with the prosodic param-
eters, and some with both. The other set of information is the
acoustic and prosodic parameters includingvalues, energy
values, duration, etc. plus the cepstral parameters. Many of them
were derived with ESPS tools. For the input text sentence to be
converted into speech, after the prosodic structure and break in-
dices are determined as discussed previously, an indexing file
of linguistic/symbolic features just as those in Table VII was
also generated for each INITIAL/FINAL unit in the desired text
sentence. This sequence of indexing files of linguistic/symbolic
features for the desired text sentence is thus the input to the voice
unit selection process to be discussed below. The selected units
can be an INITIAL/FINAL unit, a syllable, a syllable plus a pre-
ceding FINAL and/or a following INITIAL, or any longer units
which may include a few syllables and so on.

For a sequence of input indexing files of linguistic/symbolic
features for the desired text sentence, both a sequence of wave-
form units and a sequence of desired prosodic parameter sets
are to be selected. This is because the speech corpus may not
be large enough, and the best matched waveform unit may not
have exactly the desired prosodic characteristics. In that case
the prosodic characteristics of the selected waveform units may
need to be modified based on the selected prosodic parameter
sets. Therefore two selection processes have to be performed,
one for the waveform units and one for the prosodic parameter
sets. In both cases a lazy decision tree selection algorithm was
developed, in which the selection is to trace along a path in a
tree to find the set of best candidates based on some error mea-
sures [51], [52]. In both cases the error measures are evaluated
based on the linguistic/symbolic features as listed in Table VII
for the desired text sentence.

TABLE VII
THE LINGUISTIC/SYMBOLIC FEATURES USED TO SPECIFY EACH

INITIAL/FINAL U NIT IN THE SPEECHCORPORA

When the above two selection processes are completed, the
selected candidates of waveform units are further verified by
the selected prosodic parameter sets before concatenation. The
verification process is described below:

1) Evaluate a distance measure between the selected wave-
form units and the selected prosodic parameter sets. Remove
the waveform units with distance measures above a threshold
unless there is only one unit left.

2) The selected candidate waveform units for the desired text
sentence are listed to construct a synthesis unit lattice, i.e., there
may be more than one waveform units for a desired voice seg-
ment. Choose a path in the lattice that minimizes the concate-
nation cost, which is defined as the sum of the cost functions
calculated for all the concatenation points along the path.

3) Modify the units on the path obtained in step 2) which have
the distance measures obtained in step 1) above some pre-de-
fined threshold with TD-PSOLA based on the selected prosodic
parameter sets. The sequence of the finally obtained waveform
units are then concatenated and smoothed as the output speech.

The complete voice unit selection and concatenation process
is shown in a diagram in Fig. 4.

There are three types of concatenation and smoothing pro-
cesses for the waveform units obtained above:

1) Hard concatenation: Simply put two units together directly
and no smoothing is needed. This is used when the beginning
INITIAL in the second unit is a plosive or an affricate, as in an
example shown in Fig. 5(a).

2) Soft concatenation: The concatenation is smoothed by in-
cluding the transition parts from both sides. A certain amount
of overlap between the two waveform units makes the transition
smooth. This is used for the concatenation of any two syllables,
if the hard concatenation condition mentioned above cannot be
applied, as in an example in Fig. 5(b).

3) INITIAL–FINAL concatenation: This is used when no syl-
lable waveform that matches the requirements can be found
in the speech corpus. In this case an INITIAL and a FINAL
are concatenated to construct a syllable, as in an example in
Fig. 5(c). Overlapping and smoothing are needed.
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Fig. 4. Voice unit selection and concatenation.

Fig. 5. Three types of unit concatenation and smoothing.

VII. PROTOTYPE SYSTEM AND PRELIMINARY

PERFORMANCEASSESSMENT

A prototype system based on the above corpus-based
text-to-speech synthesis technologies for Mandarin Chinese
has been implemented. The system can accept Chinese text
input in BIG5 format, and output the speech from the speaker or
in waveform files. The basic hardware requirement is a Pentium
PC(300 MHz) with 64 Mbytes RAM, 1 Gbytes hard disk and
a 16-bit sound card. The OS could be Windows95 or Windows
NT. There are about 630 Mbytes of speech data. The extracted
linguistic/symbolic features as well as acoustic and prosodic
parameters are about 25 Mbytes and the lexicon is about
5 Mbytes. The lexicon, the linguistic/symbolic features, and the
acoustic and prosodic parameters are loaded into the memory

when the program is executed. The text input is converted into
a word sequence with POSs tagged by a text analysis module.
The rest is exactly the same as described above. The processing
time needed for synthesizing a speech paragraph is in general
shorter than the length of the speech paragraph, therefore
real-time synthesis is realizable if a reasonable synchronous
scheme is applied.

The performance assessment is a much more difficult part.
The individual performance of each modular component [54],
[55], such as the automatic phonetic/prosodic labeling and
the automatic assignment of break indices for a desired text
sentence, can be tested as reported in the previous sections.
However, the assessment of the overall synthesized speech
quality, or identifying how such quality is dependent on the
approaches used in each individual modular component, is
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much more challenging. This is also true even for western
languages, since it has to do with human perception and is
therefore subjective [40], [43]. Substantial efforts have been
made to develop good methodologies for such purposes. The
primary approaches include subjective tests by enough number
of listeners, side-by-side comparative tests among different
systems, providing real-time access to many systems via Web
and so on, with target criteria including intelligibility and
naturalness [56]–[59]. There exist various difficulties here.
First, very few systems for Mandarin Chinese are actually
accessible for comparison and academic testing. Second,
different corpus-based systems, even with Mandarin Chinese
and accessible for testing, are based on corpora of different
sizes, different design, produced by different speakers with
different prosody, in addition to being processed by different set
of technologies. So the comparison results, even if obtainable,
may not be able to provide too much information. Thirdly,
comparison with systems based on different approaches,
for example rule-based approaches, tells even less since the
systems are fundamentally quite different.

Even with the above difficulties, some preliminary perfor-
mance evaluation was conducted on this prototype system
to see how the technologies mentioned here jointly provide
the synthesized speech quality. In a regular classroom setting
without using earphones, synthesized speech from the system
was played to a total pool of 40 subjects, all of them under-
graduate university students. The subjects were asked to rate
what they heard in the following experiments. A set of 20
paragraphs of texts were used. They were manually selected out
of 120 paragraphs randomly extracted from daily newspapers
and magazines published in Taiwan. The only criterion for the
manual selection was to try to avoid too many repeated phrases
or sentence structures in the 20 paragraphs. The length of these
paragraphs ranged from 12 to 30 syllables.

A series of three experiments (1) (2) (3) were performed, with
purposes to evaluate how the overall synthesized speech quality
is related to, respectively, the automatic phonetic labeling, au-
tomatic prosodic labeling and POS grouping techniques used in
prosodic structure generation discussed here in this paper [40].
A “baseline system” primarily based on conventional corpus-
based TTS technologies was first constructed. This included
the conventional automatic phonetic labeling approach as men-
tioned in Section III and shown in Fig. 1(a) without iterative
correction rules, the automatic prosodic labeling approach pre-
viously proposed based on hidden Markov models [41] without
using the hierarchical approach, the prosodic structure genera-
tion based on 26 POS groups simply using syntactic knowledge
from human experts as described in Section V, plus the speech
corpora design proposed in this paper as described in Section II,
and the unit selection and concatenation approaches developed
in this paper as described in Section VI. Experiment (1) was
to test the dependence of the overall synthesized speech quality
on the iterative correction rules in automatic phonetic labeling
[discussed in Section III and shown in Fig. 1(b)] alone, there-
fore the above “baseline system” [referred to as system con-
figuration (a) here] was compared to a “system configuration
(b),” in which everything was exactly the same as the “base-
line system,” except the iterative correction rules for automatic

TABLE VIII
SUBJECTIVEQUALITY RATING STATISTICS OBTAINED IN THE 3 EXPERIMENTS

(1) (2) (3) WITH SIX SYSTEM CONFIGURATIONS(a), (b), (c), (d), (e), and (f)

phonetic labeling were used. For each paragraph out of the 20
mentioned above, three versions of speech were played to the
subjects. The first was the natural speech produced by the same
male speaker who produced the speech for the TTS inventory.
The subjects were told that this was the upper bound reference
with a rating 5.0. The next two versions were those synthesized
by the system configuration (a) (the “baseline system”) and (b)
(with iterative correction rules). The 40 subjects were divided
into two groups of 20 subjects each, in which the two versions
of synthesized speech were played in different order. The sub-
jects were not informed which version was produced by which
system configuration, but simply asked to provide a rating for
speech quality from 1.0 to 5.0, with 5.0 representing the upper
bound of the natural speech. In order to avoid too large variance
in the scores provided by the subjects, the subjects were told
that reasonable scores for the synthesized speech may be be-
tween 3.0 and 4.0, although they were actually allowed to give
any scores between 1.0 and 5.0. The results are listed in the first
two rows of Table VIII. It can be found that with the iterative
correction rules the mean score was slightly improved, although
to a very limited extent as compared to the standard deviation
for the scores. As can be found that the standard deviation here
is not very large, probably because the subjects were told that
the reasonable scores were between 3.0 and 4.0. This may also
be the reason why the mean score is not very far from 3.5. Note
that the difference in the mean scores for configurations (a) and
(b) may not be significant. All can be said is that configuration
(b) seems to be slightly better in average.

Experiment (2) was conducted a few days later after the Ex-
periment (1) described above, with a purpose of testing the de-
pendence of the overall synthesized speech quality on the hi-
erarchical automatic prosodic labeling approaches discussed in
Section IV, based on the slightly better system configuration (b)
obtained in Experiment (1). Two versions of speech were first
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played to the subjects as references. The first was the natural
speech with given rating 5, and the second was that produced by
system configuration (b) including a rating given by each indi-
vidual subject himself a few days before. Next played were two
versions of speech synthesized by system configurations (c) and
(d), in which everything is exactly the same as in system con-
figuration (b), except the prosodic labeling was done using the
hierarchical approach proposed in this paper. System configu-
ration (c) used only the parameters derived from the acoustic
signals [just as those in Table V(a)], while system configuration
(d) used the parameters derived from texts in addition [just as
those in Table V(b)]. These two versions of speech were played
to two groups of 20 subjects each with different order. They were
asked to give the rating based on the two references. The results
are listed in the next two rows of Table VIII. It can be found
that the mean scores were again slightly improved with the hi-
erarchical prosodic structure although the difference is not very
significant, and the use of parameters derived from texts was
even slightly better. Note that the standard deviation here is also
relatively small, probably because the two reference scores [5.0
for natural speech and the scores the subjects themselves gave
for system configuration (b)] were given before the tests.

Experiment (3) was conducted again a few days later after
the Experiment (2), with a purpose of testing the dependence
of the overall synthesized speech quality on the POS grouping
techniques used in prosodic structure generation discussed in
Section V, based on the slightly better system configuration
(d) obtained in Experiment (2). Just as in Experiment (2),
two versions of speech were first played to the subjects as
references. The first was the natural speech with given rating
5.0, and the second was that produced by system configuration
(d) including a rating given by each individual subject himself
a few days before. Next played were two versions of speech
synthesized by system configurations (e) and (f), in which
everything was exactly the same as in system configuration
(d), except the POS grouping used in the prosodic structure
generation was different. System configuration (e) used the
text-corpus grouping approach while system configuration (f)
used the speech-corpus grouping approach as discussed in
Section V and shown in Table VI(a). The two versions were
again played in different order to two groups of subjects. The
results are listed in the last two rows of Table VIII. It was found
that the text-corpus grouping [used in system configuration
(e)] did not necessarily provide better synthesized speech
quality as compared to the syntactic grouping based on human
knowledge [used in system configurations (a)–(d)]. However,
the speech-corpus grouping [used in system configuration
(f)] including information obtained from the speech corpus
provided slightly better synthesized speech quality, although
the difference is not very significant either. This is in good
agreement with the results in Table VI(a). Again, it can be
noted that the standard deviation here is relativity small. System
configuration (f) represents the integration of all technologies
proposed in this paper, and was shown in the tests here with
improved synthesized speech quality as compared to system
configuration (a), or the “baseline system.” Note that the
system configuration (a) was also based on exactly the same
corpus developed by the corpus design principles mentioned in

this paper, as well as unit selection/concatenation approaches
developed in this paper, but other modular components of the
system configuration (a) was conventional.

It should be pointed out here that it seems not easy for a
subject to compare too many different versions of synthesized
speech perceptually at the same time. This is why here we di-
vided the tests into three separate experiments, in each of which
only a few versions of synthesized speech were compared, plus
some reference scores for the prior experiment given. This may
be an approach to obtain incremental improvements for each
modular component. However, with the three separate experi-
ments, it may not make too much sense to compare the mean
scores for the final system [3.67 for configuration (f)] and the
baseline system [3.41 for configuration (a)] directly. In other
words, if the two versions of synthesized speech for config-
urations (f) and (a) were compared in another experiment di-
rectly, the results may be quite different. But the point here is
to show that with the incremental improvements provided by
different modular components (though not very significant for
each individual case), the final system was actually improved
step-by-step. With these difficulties in speech quality assess-
ment, the authors are planning to construct a Website demon-
strating synthesized speech samples used in the experiments in
Table VIII after the paper is published, so that the readers will
be able to assess the synthesized speech quality perceptually by
themselves, as long as they are able to listen to Mandarin speech.

VIII. C ONCLUDING REMARKS

It has been well known that there are many structural fea-
tures of Mandarin Chinese. The tonal aspect has been one usu-
ally considered first, and tone Sandhi was often taken as a core
phenomenon for prosody studies in Mandarin Chinese. In this
research, it was found from the experiences in manual labeling
of speech corpora that the hierarchical structure may provide a
better global picture of prosody in Mandarin Chinese, while the
tone Sandhi reflects the local prosody behavior. By testing with
the prototype system, it was easily verified that almost all tone
Sandhi phenomena were automatically produced in the prosody
structure generated by the proposed approach, although no spe-
cial efforts or considerations for tone Sandhi were ever made.
This verified that the technologies developed here provided a
better overall picture of prosody in Mandarin Chinese, although
there are still many questions unanswered. On the other hand,
the monosyllabic structure and character/syllable mapping rela-
tion is another key structural feature of Mandarin Chinese, on
which many prior text-to-speech systems have been based. In
the approaches presented in this paper, however, the waveform
units selected from the corpus very often have time spans across
syllable boundaries, as can be easily observed in the prototype
system. It was also found from the experiences in manual la-
beling of speech corpora that the hierarchical structure seems
to play a much more important role than the individual syllable
structure in the prosody of Mandarin Chinese, although the char-
acter/syllable mapping relation is always a key factor in TTS for
Mandarin Chinese. It can be easily found throughout this paper
that many of such well-known structural features of Mandarin



CHOU et al.: SET OF CORPUS-BASED TEXT-TO-SPEECH SYNTHESIS TECHNOLOGIES FOR MANDARIN CHINESE 493

Chinese have in fact been carefully considered, from corpus de-
sign to automatic labeling, from prosodic structure generation
to waveform unit selection, although a completely new set of
technologies were actually developed here.

REFERENCES

[1] “Special issue on spoken language processing,”Proc. IEEE, Aug. 2000.
[2] W. N. Campbell and A. W. Black, “Prosody and the selection of

source units for concatenative synthesis,” inProgress in Speech
Synthesis. Berlin, Germany: Springer Verlag, 1996, pp. 279–282.

[3] A. W. Black and P. Taylor, “CHATR: A generic speech synthesis
system,” inProc. COLING-94, 1994, pp. 983–986.

[4] W. N. Campbell, “CHATR: A high-definition speech re-sequencing
system,” inProc. 3rd ASA/ASJ Joint Meeting, 1996, pp. 1223–1228.

[5] C. Shih and R. Sproat, “Issues in text-to-speech conversion for Man-
darin,” Int. J. Computat. Linguis. Chin. Lang. Process., vol. 1, no. 1, pp.
37–86, 1996.

[6] L. S. Lee, C. Y. Tseng, and M. Ouh-Young, “The synthesis rules in a
Chinese text-to-speech system,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, no. 9, pp. 1309–1320, 1989.

[7] C. S. Liu, M. F. Tsai, Y. H. Hsyu, C. C. Lu, and S. M. Yu, “A Chinese
text-to-speech system based on LPC synthesizer,”Telecommun. Lab.
Tech. J., vol. 19, no. 3, pp. 269–285, 1989.

[8] J. Choi, H. W. Hon, J. L. Lebrun, S. P. Lee, G. Loudon, V. H. Phan, and
S. Yogananthan, “Yanhui, a software based high performance Mandarin
text-to-speech system,” inProc. ROCLING VII, 1994, pp. 35–50.

[9] B. Ao, C. Shih, and R. Sproat, “A corpus-based Mandarin text-to-speech
synthesizer,” inProc. Int. Conf. Spoken Language Processing, 1994, pp.
1771–1774.

[10] L. Cai, H. Liu, and Q. Zhou, “Design and achievement of a Chinese
text-to-speech system under windows,”Microcomput., vol. 3, 1995.

[11] S. H. Hwang, S. H. Chen, and Y. R. Wang, “A Mandarin text-to-speech
system,” inProc. Int. Conf. Spoken Language Processing, 1996, pp.
1421–1424.

[12] R. Sproat, C. Shih, W. Gale, and N. Chang, “A stochastic finite-state
word segmentation algorithm for Chinese,”Comput. Linguist., vol. 22,
no. 3, 1996.

[13] L. S. Lee, C. Y. Tseng, and C. J. Hsieh, “Improved tone concatenation
rules in a formant-based Chinese text-to-speech system,”IEEE Trans.
Speech Audio Processing, vol. 1, pp. 287–294, July 1993.

[14] Y. C. Chang, Y. F. Lee, B. E. Shia, and H. C. Wang, “Statistical models
for the Chinese text-to-speech system,” inProc. EUROSPEECH, 1991,
pp. 227–240.

[15] S. H. Hwang and S. H. Chen, “A prosodic model of Mandarin speech
and its application to pitch level generation for text-to-speech,” inProc.
Int. Conf. Acoustics, Speech, Signal Processing, 1995, pp. 616–619.

[16] C. Shih, “The prosodic domain of tone Sandhi in Chinese,” Ph.D. dis-
sertation, Univ. California, Berkeley, 1986.

[17] M. C. Chang, “A prosodic account of tone, stress, and tone Sandhi in
Chinese language,” Ph.D. dissertation, Univ. Hawaii, Hilo, 1992.

[18] K. E. A. Silverman, M. Beckman, J. F. Pitrelli, M. Ostendorf, C.
Wightman, P. Price, J. Pierrehumbert, and J. Hirschberg, “ToBI: A
standard for labeling English prosody,” inProc. Int. Conf. Spoken
Language Processing, vol. 2, 1992, pp. 867–870.

[19] Y. Sagisaka, “Speech synthesis by rule using an optimal selection of
nonuniform synthesis units,” inProc. Int. Conf. Acoustics, Speech,
Signal Processing, 1988, pp. 679–682.

[20] K. Takeda, K. Abe, and Y. Sagisaka, “On the basic scheme and algo-
rithms in nonuniform units speech synthesis,” inTalking Machines: The-
ories, Models and Designs. Amsterdam, The Netherlands: North-Hol-
land, 1992, pp. 93–106.

[21] S. King, T. Portele, and F. Hofer, “Speech synthesis using nonuniform
units in the Verbmobil Project,” inProc. EUROSPEECH, 1997, pp.
569–572.

[22] M. Chu et al., “Selecting nonuniform units from a very large corpus
for concatenative speech synthesizer,” inInt. Conf. Acoustics, Speech,
Signal Processing, Salt Lake City, UT, 2001.

[23] C. S. Liu, G. H. Ju, W. J. Wang, H. C. Wang, and W. H. Lai, “A new
speech synthesizer for text-to-speech system using multipulse excitation
with pitch predictor,” inInt. Conf. Computer Processing of Chinese and
Oriental Languages, 1991, pp. 205–209.

[24] M. Chu and S. Lu, “High intelligibility and naturalness Chinese TTS
system and prosodic rules,” inProc. XIII Int. Congr. Phonetic Sciences,
1995, pp. 334–337.

[25] [Online]. Available: http://www.sinica.edu.tw/~tibe/2-words/modern-
words.

[26] L. S. Lee, “Voice dictation of Mandarin Chinese,”IEEE Signal Pro-
cessing Mag., vol. 14, pp. 63–101, July 1997.

[27] L. S. Leeet al., “Golden Mandarin (I)—A real-time Mandarin speech
dictation machine for Chinese language with very large vocabulary,”
IEEE Trans. Speech Audio Processing, vol. 1, pp. 158–179, Apr. 1993.

[28] J. Shenet al., “Automatic selection of phonetically distributed sentence
sets for speaker adaptation with application to large vocabulary Man-
darin speech recognition,”Comput. Speech Lang., vol. 13, no. 1, pp.
79–97, Jan. 1999.

[29] Y. R. Chao, “Tone and intonation in Chinese,” inBulletin of the Institute
of History and Philology. New York: Academia Sinica, 1933, vol. 4,
pp. 2121–2134.

[30] , A Grammar of Spoken Chinese. Berkeley, CA: Univ. of Cali-
fornia Press, 1968.

[31] A. T. Ho, “Intonation variations in a Mandarin sentence for three expres-
sions: Interrogative, exclamatory, and declarative,”Phonetica, vol. 34,
pp. 446–456, 1977.

[32] F. C. Chou and C. Y. Tseng,The Design of Prosodically Oriented Man-
darin Speech Database: Int. Congr. Phonetic Science, 1999.

[33] C. N. Li and S. A. Thompson,Mandarin Chinese: A Functional
Reference Grammar. Berkeley, CA: Univ. California Press, 1981, pp.
520–563.

[34] C. Wells, “Computer-coded phonemic notation of individual languages
of the European community,”J. Int. Phonetic Assoc., vol. 19, pp. 32–54,
1989.

[35] C. Y. Tseng and F. C. Chou, “Machine readable phonetic transcription
system for Chinese dialects spoken in Taiwan,” inProc. Oriental CO-
COSDA Workshop, 1998, pp. 179–183.

[36] , A Prosodic Labeling System for Mandarin Speech Database: Int.
Congr. Phonetic Science, 1999.

[37] F. C. Chou, C. Y. Tseng, and L. S. Lee, “Automatic segmental and
prosodic labeling of Mandarin speech,” inInt. Conf. Spoken Language
Processing, 1998.

[38] J. P. H. van Santen and R. W. Sproat, “High accuracy automatic segmen-
tation,” in Proc. Eurospeech, 1999.

[39] HMM Tool Kits (HTK).. [Online]. Available: http://htk.eng.cam.ac.uk.
[40] C. W. Wightman, A. K. Syrdal, G. Stemmer, A. Conkie, and M. Beut-

nagel, “Perceptually based automatic prosodic labeling and prosodically
enriched unit selection improve concatenative TTS synthesis,” inProc.
ICSLP, Beijing, China, 2000.

[41] C. W. Wightman and M. Ostendorf, “Automatic labeling of prosodic
patterns,”IEEE Trans Speech Audio Processing, vol. 2, pp. 469–481,
1994.

[42] A. K. Syrdal and J. McGory, “Inter-transcriber reliability of ToBI
prosodic labeling,” inInt. Conf. Spoken Language Processing, Beijing,
China, 2000.

[43] A. K. Syrdalet al., “Corpus-based techniques in the AT&T NEXTGEN
synthesis system,” inInt. Conf. Acoustics, Speech, Signal Processing,
2001.

[44] F. C. Chou, C. Y. Tseng, and L. S. Lee, “Automatic generation of
prosodic structure for high quality Mandarin speech synthesis,” inInt.
Conf. Spoken Language Processing, 1996, pp. 1624–1627.

[45] F. C. Chou, C. Y. Tseng, K. J. Chen, and L. S. Lee, “A Chinese text-to-
speech system based on part-of-speech analysis, prosodic modeling and
nonuniform units,” inProc. Int. Conf. Acoustics, Speech, Signal Pro-
cessing, 1997, pp. 923–926.

[46] K. J. Chen and S. H. Liu, “Word identification for Mandarin Chinese
sentences,” inProc. COLING, 1992, pp. 101–107.

[47] L. P. Chang and K. J. Chen, “The CKIP part-of-speech tagging system
for modern Chinese texts,” inProc. ICCPOL, 1995, pp. 172–175.

[48] Chinese Knowledge Information Processing Group, “The analysis of
Chinese parts-of-speech,” Inst. Inform. Sci., Academia Sinica, Beijing,
China, Tech. Rep. 93-06, 1993.

[49] M. Q. Wang and J. Hirschberg, “Automatic classification of intonational
phrase boundaries,”Comput. Speech Lang., pp. 175–196, 1992.

[50] A. Black and P. Taylor, “Assigning phrase breaks from part-of-speech
sequences,” inProc. Eurospeech, 1997, pp. 995–998.

[51] F. C. Chou, C. Y. Tseng, and L. S. Lee, “Selection of waveform units
for corpus-based Mandarin speech synthesis based on decision trees and
prosodic modification costs,” inProc. Eurospeech, 1999.

[52] F. C. Chou and C. Y. Tseng, “Corpus-based Mandarin speech synthesis
with contextual syllabic units based on phonetic properties,” inProc. Int.
Conf. Acoustics, Speech, Signal Processing, 1998, pp. 893–896.



494 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 7, OCTOBER 2002

[53] A. Conkie, M. C. Beutnagel, A. K. Syrdal, and P. E. Brown, “Preselec-
tion of candidate units in a unit-selection-based TTS synthesis system,”
in Int. Conf. Spoken Language Processing, Beijing, China, 2000.

[54] F. Yvon et al., “Objective evaluation of grapheme to phoneme conver-
sion for text-to-speech synthesis in French,”Comput. Speech Lang., vol.
12, pp. 393–410, 1998.

[55] G. P. Sonntag and T. Portele, “PURR—A method for prosody evaluation
and investigation,”Comput. Speech Lang., vol. 12, pp. 437–451, 1998.

[56] ITU-T Recommendation P.800,Telephone Transmission Quality Sub-
jective Opinion Tests: Methods for Subjective Determination of Trans-
mission Quality. Geneva, Switzerland: ITU, 1996.

[57] D. Gibbon, R. Moore, and R. Winski,HANDBOOK of Standards and
Resources for Spoken Language Systems. Berlin, Germany: Mouton
de Gruyter, 1997, pp. 481–563.

[58] J. Van Santen. Multi-lingual text-to-speech synthesis evaluation.
[Online]. Available: http://www.itl.atr.co.jp/cocosda/synthesis/eval-
text.html.

[59] J. Zhang, S. Dong, and G. Yu, “Total quality evaluation of speech syn-
thesis system,” inInt. Conf. Spoken Language Processing, 1998, pp.
60–63.

Fu-Chiang Chou received the B.S. and Ph.D. de-
grees in electrical engineering from National Taiwan
University, Taipei, Taiwan, R.O.C., in 1989 and 1999,
respectively.

He was a Postdoctoral Fellow at the Institute
of Linguistics, Academia Sinica, Taipei, in 1999.
He was the Chief Technology Officer of Applied
Speech Technologies, Taipei, from 1999 to 2001.
Since 2001, he has been with Philips Research East
Asia, Taipei, as a Senior Researcher. He is now a
Project Manager of Philips Speech Processing, Voice

Control. His research interests are in the area of digital speech processing with
special interests on text-to-speech and voice recognition systems.

Chiu-Yu Tseng received the Ph.D. degree in linguis-
tics from Brown University, Providence, RI.

She is a Research Fellow with Institute of Lin-
guistics, Academia Sinica, Taipei, Taiwan, R.O.C.
She has collaborated with engineers extensively
and worked on a number of speech science related
projects. Her research in speech science has focused
on building phonetic and prosodic oriented speech
database for Mandarin, developing cross-dialect
labeling systems for Chinese, and constructing a
working organization for speech prosody on the

basis of production, perception, speech planning, physiology and breathing.
Her other research interests also include psycholinguistic and neurolinguistics
basis for speech.

Lin-Shan Lee (S’76–M’77–SM’88–F’93) received
the Ph.D. degree in electrical engineering from Stan-
ford University, Stanford, CA.

He has been a Professor of electrical engineering
and computer science at the National Taiwan
University, Taipei, R.O.C., since 1982 and holds a
joint appointment as a Research Fellow of Academia
Sinica, Taipei. His research interests include digital
communications and spoken language processing.
He developed several of the earliest versions of
Chinese spoken language processing systems in

the world, including text-to-speech system, natural language analyzer, and
dictation systems.

Dr. Lee was Guest Editor of a Special Issue on Intelligent Signal Pro-
cessing in Communications of the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS in December 1994 and January 1995. He was the Vice
President for International Affairs (1996–1997) and the Awards Committee
Chair (1998–1999) of the IEEE Communications Society. He has been
a member of Permanent Council of International Conference on Spoken
Language Processing (ICSLP), and is currently a member of the Board of
International Speech Communication Association (ISCA).


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


