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Abstract 
We hypothesize that various prosody output styles can be 
predicted and simulated from one default base form by 
accounting for contributions from higher level information to 
cross-phrase prosodic relationship. Speech materials of four 
prosody styles were selected: (1.) Han and Tang poetry, (2.) 
Tang Ballads and Song poetry, (3.) Qin, Tang and Song 
classic prose and (4.) contemporary TV weather forecast. F0 
contours were analyzed using the Fujisaki model, while 
quantitative analyses of predictions from layered-and-
cumulative contribution specified by the HPG (Hierarchical 
Prosodic phrase Grouping) framework [Tseng et al, 2004; 
2005; 2006] were performed across styles and speakers. 
Results confirmed that higher level contribution is significant 
across style; contribution distribution patterns and style 
specific; more regular prosodic formats require more 
contribution from higher level; stylistic dynamics are 
predictable; and the HPG base form is indeed default.  
Index Terms: Hierarchical Prosody Group, HPG, discourse 
prosody, linear regression model, higher level contribution, 
prosody stylistic dynamics 
 

1. Introduction 
We have established previously [1, 2 ,3] from quantitative 
corpus analyses of Mandarin Chinese that fluent speech 
prosody contains higher level discourse information above 
intonation unit (IU). We further stated that higher information 
is the semantics that associates phrases and sentences into 
coherent speech paragraphs beyond syntax government, 
delivered through cross-phrase prosodic context, most notably 
as intonation variations. Our Hierarchical Prosodic phrase 
Grouping (HPG, formerly termed PG) framework, specifies 
how higher level discourse information constrains and triggers 
individual phrase intonations to adapt systematically in order 
to yield multi-phrase paragraph prosody; how layered and 
contributions cumulatively make up output prosody; how 
contributions can be accounted for quantitatively; and why 
output intonation variations are systematic and predictable. 
(See details in [2, 3].) We specify discourse-defined roles by 
phrase units in three relative HPG-positions: HPG-initial, -
medial and –final. Cross-phrase dynamic but systematic 
templates for F0 contours, syllable duration adjustment, 
intensity distribution and boundary break patterns were 
quantitatively derived. Correlating modular acoustic 
simulation models were also constructed [3]. Figure 1 shows 
the 6-layer tree diagram of the HPG framework in prosodic 
units that accounts for multi-phrase output prosody. From 
bottom up, the layered nodes are syllables (SYL), prosodic 

words (PW), prosodic phrase (PPh), breath groups (BG), 
prosodic phrase groups (PG) and Discourse. The upper 
prosodic layers/levels above PPh can also collapse to 
accommodate discourse of various lengths. 

 
Figure1. A schematic tree diagram of phrase-grouping 

discourse organization in prosodic levels and units, including 
between-phrase fillers and markers. 

Our current hypothesis is as follows (1.) the multi-phrase base 
from of the HPG framework can function as a default base 
form from which various output prosody styles could be 
predicted. (2.) Prosody styles of regular formats and templates 
(such as poetry and ballads) can be attributed to more 
contribution from higher level information above PPh. (3.) 
Dynamic distribution of layered contribution from each 
prosodic level is systematically patterned by prosody style and 
across speakers.    
  

2. Speech Materials and Data 
Speech data consisted of a total of 4 prosody styles. Read 
speech of three different literary styles from fixed rhyme 
templates (Han and Tang poetry), semi-fixed rhyme templates 
(Tang Ballads from Music Bureau and Song lyrics to free style 
(Qin, Tang and Song classic prose), as well as a fourth type of 
reading text pieces from TV weather broadcast are collected. 
While the poetry and ballads contain built-in regular to semi-
regular prosodic formats including rhyming, free style classic 
prose is the finished product of refined rhetoric editing 
without rhyming templates. These three styles all bear 
prosodic characteristics that can be attributed to distinct 
stylistic variations. The fourth choice of text from TV weather 
broadcast contains frame sentences without rhyme patterns. 26 
pieces (approximately 3,400 syllables) were selected to cover 
the first thee styles whereas 34 pieces (approximately 7,703 
syllables) of TV were selected. Table 1 summarizes the speech 
materials. A total of 3 speakers produced microphone speech 
in sound proof chambers. One female speaker read all the 
materials; one male read the first three styles; one other male 
read the fourth style. Table 2 summarizes annotated speech 
data of prosody formats 1 to 3 by speaker in number of PPh, 
discourse and speaking rates. Table 3 summarizes annotated 
TV weather forecast in the same categories as in Table 2. Note 
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that there are approximately the same number of PPh from 
prosody styles 1 to 3 (710 and 711) and prosody style 4 (720 
and 747). 

Table1. Summary of  4 types of materials by prosody format 
and style. Styles number indicates: 1. Han & Tang poetr 古詩; 
2. Tang Ballads 規則樂府; 3. Tang Ballads 不規則樂府; 4. 

descriptive prose interspersed with verse 賦; 5. Song lyrics 宋

詞); 6. ballad 民歌; 7. Qin,Tang and Song classic prose 古文; 
8. weather broadcast 氣象播報 

prosody 
format 1. regular 2. semi-regular 3. 

irregular total
4. TV 

weathe
r 

style 1 2 3 4 5 6 7  8 
range/syllabl
e 

40-
300 

150-
262 

75-
176 

34
1 

47-
104 330 107-202 40-330 80-434

piece 6 4 2 1 8 1 4 26 34 

total # of syl 610 692 151 34
1 631 330 646 3407 7703 

# of piece 10 12 4 26 34 

Table2. Summary of speech materials from styles 1 to 3 in 
number of syllable, PPh, Discourse, speaking rate by speaker. 

Poems, ballads and 
classics  # of Syl # of PPh # of 

Discourse 
speech rate 
(ms)/Syl 

female f054 3502 710 26 271 

male m056 3510 711 26 202 

Table3. Summary of speech data of TV weather forecast in 
number of syllables, PPh, Discourse and speaking rate by 

speaker 

Weather forecast # of Syl # of PPh # of 
Discourse 

speech rate 
(ms)/Syl 

female f054 7054 720 34 193 
male m054 7096 747 34 165 

 
The speech data were manually annotated by trained 
transcribers for perceived PPh, BG and PG by the HPG 
framework (see Figure1 and [1, 2, 3]). Note also that the 
speaking rates of prosody styles 1 to 3 (271 and 202 ms/Syl) is 
slower than those of prosody style 4 (193 and 165 ms/Syl), 
indicating even non-professionals reading text of weather 
forecast adopted a faster speaking rate.  
 

3. Method of Analysis  
Central to the present study is analyzing F0 contour patterns 
from the PPh and BG, PG levels in the HPG discourse 
hierarchy, and accounting for layered and cumulative 
contributions quantitatively. The Fujisaki model [4] was 
adopted for F0 analysis while a linear regression model [3, 5, 
6] was adopted to account for contribution distributions. By 
definition, the Fujisaki model specifies two basic layered 
parameters: a phrase component Ap at the phrase level for 
global contour; and an accent component Aa for local focus. 
The Aa command was later adopted at the syllable level to 
simulate syllabic tone patterns [7]. This adaptation readily 
renders the obligatory interactive relationship between 
syllable tone and phrase intonation hierarchical because the 
syllable tone is from smaller and lower level by lexical 
definition, while phrase intonation from larger and higher 
level by syntactic definition. The two parameters were 
extracted automatically [7, 8] before applying the adopted 

linear regression model [1] to predict contribution from each 
level specified by the HPG framework.   
 

3.1. Extracting the Fujisaki parameters 

Filter-based automatic extraction of the Fujisaki parameters 
Aa and Ap [7, 8] is to separate high frequency contour (HFC) 
and low frequency contour (LFC) from the speech signals. 
However, note though the original Fujisaki model is phrase 
based, reported studies on Mandarin have not defined units for 
extraction and simulation. Mandarin units varying a great deal 
by syllable numbers and/or syntactic structure were taken one 
at a time for simulation at the phrase level only without any 
discourse context. Our approach differs from reported studies 
most characteristically in that we assume higher level 
contribution from the discourse hierarchy is what constrains 
and triggers to phrase intonations to modify systematically, 
thus attempted to include prosodic information above phrase. 
As a result, when extracting the Fujisaki parameters 
automatically, we use only annotated PPh’s by HPG 
specifications instead of random units, thereby in subsequent 
tests make it possible to justify the hierarchical hypothesis 
quantitatively.  
Following rationale mentioned above, the extracted LFC 
represents goal of phrase components where PPh boundary is 
used as decision position to insert phrase commands. Figure 2 
show an example a short 3-phrase paragraph and patterns of 
extracted Aa and Ap.  The top panel displays original F0 
contour patterns in red and simulated F0 contours in blue; the 
middle panel extracted accent command Aa corresponding to 
tone components; the lower panel extracted phrase command 
Ap corresponding to phrase components. Magnitudes of 
extracted phrase components are then subject to subsequent 
quantitative analysis via linear regression. 

 
Figure2. An example of a 3-phrase paragraph and auto-

extracted Fujisaki parameters. The top panel displays original 
F0 contour patterns in red and simulated F0 contours in blue. 

The middle panel displays extracted accent command Aa 
corresponding to tone components. The lower panel displays 

extracted phrase command Ap corresponding to phrase 
components. 

   

3.2. Accounting for higher Level contributions and 
distributions above PPh 

Using a step-wise linear regression technique adopted for the 
HPG framework [3], a linear model with 3 layers is developed 
to predict speakers’ F0 behavior over time with the Fujisaki 
parameters from the PPh layer upward. Prediction begins at 
the PPh layer where we predict the F0 patterns by each PPh 
independently while residual between prediction and original 
values is regarded as contribution from the immediate higher 
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level instead of error. In other words, within each layer, we 
assume no linear association between phrases. The same 
prediction is then repeated at the BG layer by including 
residuals from the immediate lower PPh layer, and regards 
residuals at the BG layer as contribution from the next higher 
layer PG. The same prediction is repeated one last time at the 
PG layer. Ultimate prediction is derived by adding up layered 
contributions, and thus accounts for layered-and-cumulative 
contributions.  Figure 3 is a schematic representation of the 
regression processes. Note that in the present study on F0 
contour patterns we only considered contributions from the 
PPh level and above. 

 
Figure3. A schematic representation of linear regression 

predictions from the Syl level upward; whereby each level 
contributes to final output independently and cumulatively. 

At the PPh layer, the magnitude of phrase components (Ap) 
are categorized by the length (in syllable numbers) of the 
preceding PPh and current PPh. Then the residuals of Ap 
regarded as effects from the immediate higher level BG are 
predicted by its respective within-BG positions at the next 
level up. For example, “BGSequence =1” indicates the Ap is 
located in the first PPh of a specified BG. The prediction 
process is as follows. Delta represents the residual of Ap in 
each prosodic layer. 
 
 
 
 
 
 

4. Results  

4.1. Contribution from higher level information 
above PPh and distribution patterns across style 

Figure 4 shows results of respective dynamic contribution 
patterns and distributions within and across 4 prosody styles 
regular (R), semi-regular (SMR), irregular (IR) and weather 
broadcast (WIR); and by 3 HPG prosodic layers, PPh, BG and 
PG. Table 4 summarizes cross-speaker comparison of 
prediction percentage by the same parameters. Contributions 
from three prosody layers PPh, BG and PG are accounted for.  
Note that (1.) result confirm that higher level information 
contributes to output prosody across prosody styles and 
speakers whereby most significant contributions come from 
the BG layer. Note that BG layer contributions by speaker 
account for 28.1% and 51.57%, respectively, of output 
prosody R; 20.39% and 33.67% of output SMR; 8.7% and 
16.52% of output IR; and 5.063% and 7.36% of output WIR. 
Contributions from the PPh layer are in complimentary 
distribution of the BG layer while contributions from the PG 
layer insignificant. (2.) Patterns of contribution distribution 
are prosody-style dependent by HPG-layer. Note how each 
prosody style possesses distinct distribution patterns in the 
PPh and BG layers. (3.) More regular prosodic style shows 
more contribution from the BG layer while BG contribution 
reduces by prosody style from R, SMR, IR to WIR, as shown 
in Figure 4 and summarized in Table 4. The gradation from R 
to WIR is also systematic by prosody style. In short, 
distribution patterns are both style-dependent and style-
specific. (4.) Contributions from both the PPh and BG layers 
are obligatory across prosody style, together they comprise 
output prosody. (5.) The results also confirmed the hypothesis 
of the HPG base as default. Dynamic variations of prosody by 
style can now be accounted for on an R-to-IR or even –WIR 
continuum by varying proportional contributions from the PPh 
to BG layers, rather than attributing each prosody style 
independently.  

1),(Ap
:LayerPPh 

DeltaLengthcurrentPPhPhLengthprecedingPf +=

2)(1
:Layer BG

DeltaBGSequencefDelta +=

3)(2
:Layer PG

DeltaPGSequencefDelta +=
 

 
Figure4. Cross-speaker (m056; m054 and f054) comparison of respective contribution distributions within and across 4 prosody styles 

regular (R), semi-regular (SMR), irregular (IR) and weather broadcast (WIR); and by 3 HPG prosodic layers, PPh, BG and PG.  
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Table4. Cross-speaker (m056; m054 and f054) comparison of 
prediction percentage by 3 prosodic layers PPh, BG and PG; 

by 4 styles within and across 4 prosody styles regular (R), 
semi-regular (SMR), irregular (IR) and weather broadcast 
(WIR); and by 3 HPG prosodic layers, PPh, BG and PG. 

speaker style PPh BG PG 

R 71.44% 28.10% 0.46% 

SMR 78.22% 20.39% 1.39% m056 

IR 90.08% 8.70% 1.22% 

m054 WIR 91.22% 5.63% 3.14% 

R 46.50% 51.57% 1.93% 

SMR 76.82% 22.67% 0.50% 

IR 82.16% 16.52% 1.32% 
f054 

WIR 92.30% 7.36% 0.34% 

4.2. Comparison of Speaker Behavior by Style 

We noted a relatively sharp between-speaker difference of BG-
layer contribution for prosody style R, and further compared 
speaker variations by prosodic layer and across style in order to 
see if the general cross-style patterns remain similar in spite of 
contribution variation.  Figure 5 shows the accuracy of Ap at 
the PPh layer by speaker and style. Note how the trajectory of 
Ap accuracy for both speakers rises as the prosody format 
becomes more irregular from R to SMR to IR. Figure 6 shows 
the same comparison at the BG layer where the accuracy 
patterns of Ap are opposite from the PPh layer but similar 
across speakers.  

 
Figure5. Cross-style comparisons of Ap accuracy by speaker 
at the PPh layer. The horizontal axis denotes prosodic styles 

from R, SMR to IR; the vertical axis accuracy of Ap. 
 

 
Figure6. Cross-style comparisons of Ap accuracy by speaker 
at the BG layer. The horizontal axis denotes prosodic styles 

from R, SMR to IR; the vertical axis accuracy of Ap. 

Cumulative Ap accuracies from the PPh and BG layers are 
shown in Figure 7. Note how the additive outcome from two 
inverse patterns compensates each other and results the final 
trajectories to become flat. 

 
Figure7. Cumulative cross-style comparisons of Ap accuracy 

by speaker. The horizontal axis denotes prosodic styles from R, 
SMR to IR; the vertical axis accuracy of Ap. 

5. Discussion and Conclusion 
 
From the above results of F0 analyses, we confirmed our 
hypothesis that by accounting for contributions from the 

immediate prosodic layer BG above prosodic phrases PPh, 
various output styles can be predicted and simulated from one 
base form. Higher level information contributes to output 
prosody across prosody styles and speakers while the 
significance of contributions from the BG layer can NOT be 
ignored. The results also serve as further evidence that 
individual PPh (as intonation unit IU) in fluent speech are not 
independent unrelated prosody units, but rather subordinate 
subjacent sister units associated by semantic cohesion 
governed by information above phrases; and delivered through 
prosodic context. Cross-style comparisons also revealed 
systematic style-specific layer-dependent patterns of 
contribution distribution from the PPh and BG layers, 
respectively. In short, the more regular the prosodic format is; 
the more contribution comes from upper layer BG; and vice 
versa. Output prosody are cumulative outcome from layers 
involved; while the HPG framework quantitatively accounts 
for the contribution patterns by prosodic layer and prosody 
style. Frame sentences and/or paragraphs used as in TV 
weather forecast also function as a default prosody base form. 
In addition, the female speech showed larger contribution from 
higher level BG than from PPh for style R, thus further 
supports higher level information in prosody formation and 
speaker style. Thus in conclusion, we establish that one default 
base form by the HPG framework can systematically account 
for different levels of contribution; while dynamic output 
prosody styles can be generate by altering contribution 
distributions only. We believe the results are also significant to 
discourse comprehension, spoken language processing as well 
as technological implementations. 
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