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ABSTRACT 
 

Speech difficulties of children may result from pathological 

problems. Oral language is normally assessed by expert-

directed impressionistic judgments on varying speech types. 

This paper attempts to construct automatic systems that help 

detect children with severe speech problems at an early 

stage. Two continuous speech types, repetitive and 

storytelling speech, produced by Chinese-speaking hearing 

and hearing-impaired children are applied to Long Short-

Term Memory (LSTM) and Universal Transformer (UT) 

models. Three approaches to extracting acoustic features are 

adopted: MFCCs, Mel Spectrogram, and acoustic-phonetic 

features. Results of leave-one-out cross-validation and 

models trained by augmented data show that MFCCs are 

more useful than Mel Spectrogram and acoustic-phonetic 

features. Respective LSTM and UT models have their own 

advantages in different settings. Eventually, our model 

trained on repetitive speech is able to achieve an F1-score of 

0.74 for testing on storytelling speech. 
 

Index Terms— Child speech, intelligibility assessment, 

universal transformer, speech styles 
 

1. INTRODUCTION 
 

1.1. Child speech assessment 

 

Speech difficulty of children can be caused by phonological 

development problems, communication disorders or 

diseases [1]. Specific language and speech impairment leads 

to a variety of linguistic patterns in their speech. In 

particular, hearing-impaired children may show different 

difficulties in producing continuous speech. It is important 

to detect speech problems of hearing and hearing-impaired 

as early as possible, so that targeted speech therapy and 

intervention programs can be accordingly initiated [2-4]. A 

sophisticated assessment of oral language production is 

subject to multiple linguistic considerations, e.g., segment 

clarity, lexical use, sentence structure and socio-pragmatic, 

communicative skills. Among them, speech intelligibility is 

often evaluated for clarity and fluency of vowels, 

consonants, tones, rhythm, and intonation [5-7]. Our study 

focuses on speech intelligibility that involves only segment 

clarity and lexical prosody. Ideally, continuous speech is the 

most authentic speech form that reflects the ability of oral 

language production. In clinical and educational domains, 

these kinds of assessments are conducted by impressionistic 

judgements of professional experts [8]. This paper adopts 

deep learning methods that classify three levels of speech 

intelligibility, aiming to detect children with severe speech 

problems. Storytelling data are tested by models solely 

trained on repetitive data. If we are able to obtain 

encouraging output performance, it is likely that repetitive 

speech can serve as an alternative to spontaneous speech, at 

least for the purpose of early screening.  
 

1.2. Automatic assessment approaches 
 

Approaches based on neural networks, e.g., Convolutional 

Neural Network (CNN) and Recurrent Neural Network 

(RNN) have been recently applied to automatic speech 

assessment in different fields. CNN has been applied to 

classification tasks that distinguish speech production of 

Parkinson patients and healthy people [9] and assess speech 

produced by aphasia [10, 11] and dysarthria speakers [12]. 

Different from CNN, RNN is capable of modeling temporal 

sequences and can deal with variable-length utterances. 

Long-Short Term Memory (LSTM) [13] and Gated 

Recurrent Unit (GRU) [14] address vanishing gradient 

problems around special memory cell units and have the 

capability of capturing long-term temporal dependencies in 

acoustic events [15]. GRU is a simplified architecture with 

an efficiency degree that is comparable to LSTM. These two 

approaches have been adopted for building automatic 

speech assessment systems [10, 16-19], e.g., the work done 

by Korzekwa et al. on dysarthric speech [16].  

However, the property of sequential computation of 

RNN-based models in part also hinders parallelization 

across elements of input sequences. Modern Transformer 

models [20] allow for more space for parallelization and 

require less training time on GPU. The architecture of a 

Transformer model takes into account the global 

dependencies between input and output with attention 

mechanisms. Compared to the other deep learning models, 

Transformer models have achieved surprisingly satisfactory 

results on complex NLP tasks. But they fail to generalize in 

some of the simple tasks with which RNN-based models 
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can successfully handle. Universal Transformer (UT) [21] 

has thus been proposed to enhance the adaptability of 

Transformer models. 

We apply sequence modeling approaches LSTM and 

UT to classify speech intelligibility levels of Chinese-

speaking hearing and hearing-impaired children in two 

continuous speech styles. The performance of conventional 

LSTM models are compared with that of UT models to 

experiment on the feasibility of establishing an automatic 

assessment system that is able to detect children with speech 

difficulties using only repetitive speech as training data. In 

addition, CNN is used to enhance feature extraction on 2D 

MFCCs and Mel Spectrogram. 

 

2. SINICA CHILD SPEECH CORPUS 
 

The Sinica Child Speech Corpus contains repetitive and 

storytelling speech data produced by 79 preschool children 

with normal hearing (NH) and 45 children with hearing 

impairment [22]. Among them, 30 wore traditional hearing 

aids (HA, hearing loss degree: mild to profound), and 15 

were fitted with a cochlear implant (CI, hearing loss degree: 

severe to profound). All hearing-impaired children were 

receiving Auditory-Verbal Therapy (AVT) at the time of 

recording. Signal-aligned syllable boundary information 

was obtained by the ILAS phone aligner [22] and post-

edited by trained phoneticians. Text processing was 

conducted using the CKIP automatic word segmentation 

and POS tagging system [23]. Lexical information was 

integrated with signal-aligned labels to produce multi-layer 

linguistic annotations. Authorized academic use of the 

Sinica Child Speech Corpus can be granted by the 

Department of Intellectual Property and Technology 

Transfer of Academia Sinica. 

For repetitive speech collection, 18 sentences containing 

99 distinct syllables encompassing all phonemes in Chinese 

were recorded by a female adult speaker and played one by 

one for the children to repeat. A word recognition test was 

conducted by qualified audiologists to HA and CI children 

to ensure that they were able to hear and understand all 

content words in the sentences. For storytelling speech 

collection, picture cards illustrating the content of The Hare 

and the Tortoise were shown in a fixed order to elicit 

narratives. The content transcription includes paralinguistic 

phenomena and discourse fillers, particles, and markers 

(DIS) [22]. Table 1 summarizes the dataset and the 

articulation rate (AR) of each group in seconds per syllable.  

Table 1. Data summary. 

Hearing group Hearing-impaired group 
79 children (2;11~6;3) 45 children (3;3~12;5) 
Repetitive Storytelling Repetitive Storytelling 
7,511 syll. 

 
AR: 0.308 

9,102 syll. 
3,695 DIS 

0.296 

4,064 syll. 
 

0.299 

7,467 syll. 
2,778 DIS 

0.305 

Speech intelligibility of the children was rated based on 

degree of fluency and clarity of segment production at a 

scale from 1 to 5. Fig. 1 illustrates the sum of the scores 

given by three phoneticians. As we are mainly concerned 

with intelligibility levels, the 124 children were divided into 

three intelligibility groups: LOW (<8), Medium (8~11), and 

HIGH (>11), each containing 14, 36, and 74 children. The 

storytelling speech dataset only consists of 119 children’s 

data; thus the numbers of children in LOW, MEDIUM, and 

HIGH groups are 12, 34, and 73. The main goal of this 

study is to construct automatic models that can help identify 

the LOW groups of children, in particular. We used 

repetitive speech that is on the one hand continuous speech. 

But on the other hand, it is relatively easy to collect and 

process for model training. If the models work well on 

storytelling speech, we may have the option to use repetitive 

speech instead of spontaneous speech for early screening 

tasks. 

 
Fig. 1. Subject information (intelligibility ratings). 

 

3. METHODOLOGY 

 

3.1. Speech representation 

 

Mel-frequency cepstral coefficients (MFCCs) are commonly 

used in speech assessment systems for acoustic modeling 

[10, 17-19, 24] and feature extraction [25, 26]. While deep 

learning models recently attract intense attentions, Mel 

Spectrogram is also getting increasingly popular [10, 12, 

16]. For our experiments, we implemented MFCCs and Mel 

Spectrogram feature extraction in Python using the librosa 

library [27]. For each utterance, 40-dimensional MFCCs 

and 80-dimensional Mel Spectrogram are derived from 

short-time frames with a window length of 32 milliseconds. 
 

3.2. Syllable-based acoustic-phonetic features 

 

MFCCs and Mel Spectrogram represent spectrum 

information. But they do not directly account for linguistic 

properties. Mandarin Chinese is a syllable-timed, tone 

language [28]. Syllable-related acoustic information and 

lexical tones are essential in auditory perception and lexical 

processing. Thus, we put together acoustic features whose 

linguistic relevance in continuous speech production has 

already been confirmed. Eventually, four groups of vocalic 

and lexical-prosodic features are considered [6, 29]: 1) 
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vocalic properties: the first three formants, intensity, and F0 

value at maximum sonority, 2) syllable prosody: duration, 

the mean, minimum, and maximum of intensity, 3) pitch-

related features: (a) the initial, final, maximum and 

minimum F0 values of the voiced region within a syllable, 

(b) the first three formants and intensity at time points of 

3(a), and 4) tone-related features: the slopes of the three 

lines in 3(a), if any. We use the above acoustic-phonetic 

(AP) features to test whether it is possible for them to serve 

as alternatives or supplements to MFCCs and Mel 

Spectrogram features for our LSTM and UT models. It is 

noteworthy that our AP features do not include those related 

to onset consonants that are substantially involved in the 

processes of spoken word recognition and speech 

intelligibility perception. 
 

3.3. LSTM and Universal Transformer 

 

We use time-domain sequence model LSTM as our baseline 

model and test the self-attention mechanism UT to explore 

how well these two models are able to capture the temporal 

dependency of each syllable. In CNN architecture, we 

employ only one convolution layer with 32 filters of one 

stride of 2×2 kernel on MFCCs and 4×4 kernel on Mel 

Spectrogram. The rectifier linear (RELU) activation 

function is used in the convolutional layers with a batch 

normalization layer added after the convolutional layer. The 

last layer of CNN is a 16-units dense layer with softmax 

activation function. As in total 135 syllable tokens occur in 

the 18 sentences, our input sequence is set to be 135-

syllable in length. Output sequences of CNN are connected 

to LSTM and UT to classify the input sequences. Different 

from 2D MFCCs and Mel Spectrogram, we directly input 

1D AP features to LSTM and UT models. LSTM has 256 

units with the tanh activation function. UT has 3 depth 

transformer blocks. We use dropout with probability 0.1 to 

avoid overfitting and batch normalization and to accelerate 

the training process. Finally, we combine the speech 

features (MFCCs and Mel Spectrogram) and AP features by 

a fully connected layer. All models above are trained by 

using Adam optimization algorithm with a learning rate of 

0.0001 and a batch size of 16. The implementation was 

conducted by using Keras [30] and Keras-Transformer [31] 

with default settings except for the above configurations. 
 

3.4. Implementation procedures 

 

MFCCs, Mel Spectrogram and AP are extracted from 

syllable units by employing the corpus information about 

syllable boundaries. Each syllable-based feature set is 

regarded as one data point of the input sequence. We 

conducted our experiment in two steps. First, we performed 

the leave-one-out cross-validation on repetitive speech to 

evaluate LSTM and UT models with the three sets of 

features. Then we evaluated how the models performed on 

storytelling speech. For each learning set, the model was 

trained by 100 epochs. As our training data is small, we 

augmented our repetitive speech data by first generating 

1000 speaker-lists of 18 children (because we have 18 

sentences) randomly selected from the respective LOW, 

MEDIUM, and HIGH groups. Sentences produced by each 

of the children were concatenated in the order of the 

speaker-list as input sequences in Fig. 2. Although the 

speaker-lists contain repeated children, none of the input 

sequences is identical to the original sentences in the Sinica 

Child Speech Corpus. In the second step, the augmented 

data were used for training, with a total of 500 epochs for 

each model. The original sentences of repetitive speech and 

the complete set of storytelling speech serve as testing data. 

LSTM and UT models were trained on AP features, while 

CNN-LSTM and CNN-UT models were constructed by 

using MFCCs and Mel Spectrogram as well as mixed sets of 

features. 

 

Fig. 2. New sample. 

 

4. DATA EXPERIMENTAL RESULTS 

 

4.1. Model performance in two speech styles 

 

Our main aim is to identify speech intelligibility level of the 

LOW groups of children. The leave-one-out cross-

validation results on repetitive speech in Table 2 show that 

LSTM models were more successful than UT models. But 

UT models outperformed LSTM models with augmented 

training data. The size of training data and the demand for 

complex calculation may be attributed to this difference. To 

our surprise, AP features work relatively well, even though 

the features merely take into account vocalic and lexical 

prosodic properties. Both of our CNN-LSTM and CNN-UT 

models performed better with MFCCs than with Mel 

Spectrogram and AP features. In the case of storytelling 

speech, F1 scores of leave-one-out cross-validation are 

consistently low. The best result we were able to achieve by 

CNN-LSTM model using MFCCs is 0.48 for the LOW 

group. 

Using augmented training data, the models worked better 

for both repetitive data and storytelling data. CNN-LSTM 

and CNN-UT models with MFCCs still outperformed those 

with Mel Spectrogram and AP features. Model performance 

dropped dramatically with AP features on storytelling  
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speech, suggesting that our AP features do not represent 

sufficient information that is relevant to intelligibility 

assessment. In contrast, there are only marginal differences 

between repetitive and storytelling speech with MFCCs and 

Mel Spectrogram. Concerning the LOW group, CNN-UT 

model with MFCCs is able to achieve an F1 of 0.93 on 

repetitive speech and an F1 of 0.71 on storytelling speech. 

In spite of the fact that the model may have seen part of the 

repetitive speech in the training phase, the overall model 

performance on storytelling speech is quite positive. 

We also tested whether CNN-LSTM and CNN-UT 

models can achieve better results with mixed feature sets. 

Results are summarized in Table 3. Only small increases in 

F1 scores in some subject groups were achieved. Mixed 

features did not improve the performance significantly. In 

addition to model enhancement, we will also experiment on 

integrating information about onset consonants and feature 

attributes that have been proved useful for assessing 

pathological speech into our AP features [19]. 
 

4.2. Model performance in subject groups 

 

We analyzed the classification output produced by the best 

CNN-UT model with MFCCs. Results are presented in 

Table 4 in terms of NH, HA, and CI subgroups. For 

repetitive speech, our models are in principle successful 

with all F1 scores higher than 0.8 except for the CI HIGH 

group. Some of these children produced very clear segments, 

but their sentences are less fluent in prosody [6]. It seems 

that none of the three feature extraction methods is able to 

account for this complexity. 

For storytelling speech, F1 scores of the CI subgroups 

are quite satisfactory (LOW 0.8, MEDIUM 0.8 and HIGH 

0.75). But our best models did not perform well on data 

produced by HA children. Moreover, the discrepancy in 

model performance between repetitive and storytelling data 

of HA children is also the greatest. As our HA and CI 

children were receiving the AVT training program, their 

spoken language ability can be individually very different 

and does not necessarily correlate with hearing loss degree 

or sensory aid types. Nevertheless, our results suggest a 

wider range of speech variability in HA children.  

 

5. CONCLUSIONS 

 

Our models preliminarily achieved positive results in 

assessing intelligibility levels tested on repetitive and 

storytelling speech produced by different groups of children. 

More training data are required to account for speech 

variability in continuous speech. We are currently preparing 

a large-scale speech dataset of developing children. Models 

and acoustic feature extraction methods used in this study 

will be applied to the forthcoming data to construct 

sophisticated models that are able to identify speech 

intelligibility levels and hopefully also able to specify 

speech difficulties of children with hearing or speech 

impairment.  
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Table 2. Results of model performance. 

Model Feature 

Leave-one-out cross-validation Training by augmented data 

F1 (repetitive) F1 (storytelling) F1 (repetitive) F1 (storytelling) 

L M H L M H L M H L M H 

LSTM AP 0.77 0.97 0.97 0.24 0.43 0.67 0.87  0.87  0.93  0.25  0.51  0.54  

CNN-LSTM 
MFCC 0.92 0.99 0.98 0.48 0.39 0.77 0.76  0.93  0.94  0.70  0.60  0.80  

MelS 0.92 0.99 0.99 0.24 0.49 0.72 0.74  0.90  0.91  0.58  0.56  0.76  

UT AP 0.4 0.58 0.85 0.2 0.25 0.67 0.81  0.81  0.86  0.32  0.39  0.76  

CNN-UT 
MFCC 0.52 0.69 0.9 0.36 0.38 0.73 0.93  0.94  0.95  0.71  0.62  0.81  

MelS 0.38 0.67 0.91 0.04 0.37 0.72 0.64 0.88 0.91 0.35 0.46 0.79 
 

Table 3. Results of models using mixed features. 

Model Feature 
F1 (repetitive) F1 (storytelling) 

L M H L M H 

CNN- 

LSTM 

MFCC+AP 0.92  0.88  0.94  0.63  0.61  0.84  

MelS+AP 0.68  0.96  0.88  0.33  0.47  0.69  

CNN-UT 
MFCC+AP 0.90  0.94  0.94  0.69  0.61  0.81  

MelS+AP 0.81  0.84  0.89  0.45  0.48  0.77  
 

Table 4. Best results in subject groups. 

Type Group L M H 

Repetitive 
NH 1.00 0.98 0.99 
HA 1.00 0.87 0.86 
CI 0.80 0.92 0.57 

Storytelling 

NH - 0.65 0.86 
HA 0.67 0.44 0.50 
CI 0.80 0.80 0.75 
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