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ABSTRACT 

 
Much remains unsolved in how to predict prosody from 
text for unlimited Mandarin Chinese TTS. The 
interactions and the governments between syntactic 
structure and prosodic structure were still unresolved 
challenges. By using Part-of-Speech tagging (hence POS), 
lexical information of text was required, we aimed to find 
significant patterns of word grouping from analyzing real 
speech data and such lexical information. This paper 
reported discrepancies found between lexical words 
(hence LW) parsed from text and prosodic words (hence 
PW) annotated from speech data, and proposed a 
statistical model to predict PWs from LWs. In statistical 
model, both length of the word and the tagging from POS 
are two essential features to predict PWs, and the results 
showed approximately 90% of prediction for PWs, 
however, it did leave more room for extension. We 
believe that evidence from PW predictions is a first step 
towards building prosody models from text.  

 

1. INTRODUCTION 
 

Much remains unsolved in how to predict prosody 
from text for unlimited Mandarin Chinese TTS. Linguistic 
analyses of text have been insufficient to provide 
specifications required for speech prosody, both in terms 
of prosodic units and boundaries, and in intonation 
contours for connected fluent speech. Though syntactic 
analyses provide possible boundaries and intonation 
specification for phrases, location of boundaries and 
breaks in connected speech require more specification, 
and prosody of fluent speech goes beyond concatenating 
simple-sentence intonations into strings. Aiming to build a 
prosody model for connected fluent speech from the 
bottom upward, our first step was to set up models that 
could sufficiently predict PW from LW, and to serve as a 
base for building speech prosody. 
In hierarchical rhythmic structures [1], PW is fundamental 
prosodic unit, while LW is basic syntactic unit in syntactic 

structure. However gaps and discrepancies were in each 
layer of syntactic and prosodic structures. Only 67.5% of 
PWs and LWs were coincident in our prosodic structure 
tagged corpora (in section 2.3). In this paper we proposed 
a statistical model for predicting PWs by grouping lexical 
words. The issues of grouping words to form PWs  have 
been studied in [2, 3], a good word grouping strategy 
helped construct the temporal organization of speech and 
rendered spoken utterances natural and fluent. In the 
following sections, we focused on finding an optimal 
word grouping strategy by combining lexical information 
i.e., POS tagging and analyses of real speech data, and 
studying how LWs form PWs.  
 

2. MATERIALS USED--TEXT VS. SPEECH 
CORPORA 

 
Two modalities of the same corpus were used, namely, 
text prepared for read speech and speech data collected 
subsequently. Two sets of text were used. One set was 
599 paragraphs (24803 syllables in total) ranging from 2-
character simple sentences up to 181-character complex 
sentences. These paragraphs were controlled for word 
frequency using the CKIP database 
(http://godel.iis.sinica.edu.tw/CKIP/) and phonetic 
balance for segments and tones. Another set was 26 
longer paragraphs (11592 syllables in total) of text 
ranging from 85 to 981-character paragraphs rearranged 
from the 599 paragraphs for frequency and phonetic 
controls. The two sets of text overlapped 88%. These texts 
served as materials for linguistic analysis via a lexical 
analysis algorithm (Section 2.2.) to derive LWs. Two sets 
of speech corpora were collected. Four native untrained 
speakers (2 males M01, M02 and 2 females F01, F02) 
read the 599 paragraphs at the average speech rate of 304 
ms/syllable. Another two radio announcers (1 male and 1 
female) read the 26 longer paragraphs at the average 
speaking rate of 200 ms/syllable. The two sets of speech 
data were referred as slower speech vs faster speech. 
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2.1. PW segmentation consistency among different 
speakers and speech rates  
 
Both the slower speech data and the faster speech data 
were labeled manually by trained transcribers for 
perceived boundaries and breaks (pauses) using a self-
designed labeling system [4]. The labeled data were 
further checked for transcriber consistency [5, 6, 7], the 
results were consistent with the high ratio of agreement at 
over 98% on the locations of PW boundaries reported in 
[8]. Then PW overlaps across speakers as well as speech 
rates were checked. Average PW overlaps across speakers 
for the slower speech and the fast speech were at 91.57% 
and 92.45%, respectively. We then compared cross-
speaker overlaps of PW segmentation across the two sets 
of speech data to see if speech rate has any effect on PW. 
An overlap at 90.35% was found. The overlap indicated 
that PW was a reliable prosodic unit in speech production 
across speakers and speech rate. Hence predicting PWs is 
a feasible task for prosody generation. 
 
2.2. Linguistic analysis of text into LWs 
 
A lexical segmentation algorithm was used to segment the 
text into LW [9]. In 599 paragraphs set, comparisons 
between LW and PW were made as shown in Table 1.  
 
Table 1. Comparison of syllable numbers in LW and PW 
(%) 
# of 
    syl 
 
% 

1 2 3 4 5 6 7 8 9 

LW 38 54 5 2 0.1 0.07 0.19 .01 .01 
PW 5 67 25 2 0.2 0.02 0 0 0 
A clear discrepancy between LW and PW was found. 
Results from lexical analysis showed that monosyllabic 
(38%) and disyllabic (54%) LWs constituted the majority 
of LWs (92%) while the amount of syllabic>2 LWs was 
insignificant. However, results from labeled read speech 
data of the same text showed that the disyllabic (67%) and 
the tri-syllabic (25%) PWs were the majority of PWs 
(92%) whereas the monosyllabic (5%) and the syllabic>3 
PWs were insignificant. Further analyses showed that 
67.5% of PWs equaled LWs, the rest 32.5% of PWs 
consisted of multi-LWs in which 89% of PWs were 
consisted of 2 LWs and 11% of PWs were consisted of 3 
or at most 4 LWs. Table 2 and 3 demonstrated the 
distribution of PWs respectively in situation (1.) 
PWs=LWs and (2.) PWs consisted of multi- LWs. 
 
Table 2. Distribution of PWs while PWs =LWs 

# of syllable 1 2 3 4 5~ 
% 7.1 84.1 8.6 0.2 0 

 

Table 3. Distribution of PWs while PWs consisted of 
multi-LWs 
# of 
syllable

1-1 1-2 2-1 1-1-1 1-2-1 3-1 Others 

% 30.7 23.2 31.9 6.4 2.4 1.3 4.2 
The above analyses suggests that (1.) lexical words were 
not sufficient to cover prosodic words, (2.) monosyllabic 
LWs were combined with their neighboring LWs to form 
disyllabic and tri-syllabic PWs, and (3.) possible solution 
might dwell in capturing how monosyllabic LWs behaved 
in PW formation.  
A rule-based model was experimented to see the behavior 
of monosyllabic LW, and the results are showed in Table 
4. In rule-based model, we extracted the prosodic 
parameters by observing the labeled speech data of 599 
paragraphs, and generalized the rules. The experimental 
results showed that the recall is lower than the precision, 
meaning that most part of the boundaries was predicted, 
but the real speech had more breaks and pauses. By 
observing the errors we concluded the following two 
disadvantages of rule-based model; 1) rules were set up 
by human and could not enumerate all possible 
combinations, 2) rule-based model did not handle the 
cases of combining three lexical words to form PWs. 
Therefore, further development of statistical model was 
made to resolve these defects.  
 
Table 4. Results of rule-based model 

 F01 F02 M01 M02 
Recall 85.62% 86.91% 84.36% 83.96% 
Precision 92.45% 91.31% 90.05% 91.17% 
F-score 88.9% 89.05% 87.11% 87.41% 

 
3. STATISTICAL MODEL FOR PROSODIC-WORD 

SEGMENTATION IN TEXT 
 
Statistical model was adopted and tested to experiment 
how PWs could be better predicted, in particular how 
monosyllabic LWs form PWs. It is noted that the POS 
identities of majority of monosyllabic LWs were adverbs, 
prepositions, aspects, quantifiers, personal pronouns, 
particles, and conjunctions etc. These monosyllabic LWs 
tended to combine with preceding or following word to 
become a possible PW. Our statistical model will use both 
features of POS and length of LWs to predict PWs. Since 
speech rate did not affect PWs (Section 2), we used the 
larger speech corpus, i.e. the slower speech data from 4 
speakers, for subsequent experiments. 
 
3.1. Statistical model 
 
The aim of a statistical model was to find the most optimal 
combination for PWs from LWs. In this paper we 
modeled PW generation as a tagging problem. There are 
only two different tags L and M for LWs in our model. If 
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a LW has an L tag which means this LW should be 
combined with its left LW to form  a PW no matter the 
left LW has tagged L or M. If a LW has an M tag and its 
right neighbor LW has also an M tag, it means that this 
LW stands along as a PW. We can derive PWs of a text 
from its {L,M} tagged LW structure and vise versa. For 
instance a PW “以四個月” has its lexical {L,M} tagged 
structure as “以(M) 四個(L) 月(L)”. The problem of deriving 
PW structures of texts from LW structures becomes a 
tagging problem. We will design a statistical model for 
tagging {L,M} of LWs. The probabilities used in our 
model can be estimated from PW segmented corpora.  
 
3.2. Methodology 
 
In our statistical model, both length of the word and the 
tagging from POS are two essential features to predict 
PWs and we try to maximize ArgPW P(PW|LW).  
Max PW P(PW|LW) = Max T P(T|LW)= MAX T 
P(t1|LW)*P(t2|t1,LW)*…*P(tn|t1,t2,…tn-1,LW), where T={t1, 
t2, …,tn} is the tag sequence of a PW sequence. For PW 
generation, an input sentence would be segmented into 
LWs with POS tagging first. Equation (1) is our statistical 
model. ),,)(,|( 2111 mmmmmmm LCLtfLCtP −−−− + is the 
probability of the m-th LW that it should be combined or 
isolated. mt  indicated the method of the combination of 
the m-th LW. mC  indicates the POS-category of the m-th 

LW , and the length of LW denoted as mL . A Boolean 
function )( 1−mtf was used to decide whether the length of 
the m-2th LW would be considered, if 1−mt =L, return 1, 
else return 0.  
P(tm|t1,t2,…tm-1,LW) ~= 
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Backoff strategy was used as follows: equation (1) is the 
main equation with features of categories and the length 
of the word, if the probability is 0, then goes to equation 
(3), here we ignore the category of the m-1th word. The 
probability of equation (3) may still get 0, then equation 
(4) would be used, but the length of the m-2th word 
remained important to be reserved. The equation (5) is the 
last probability that we can get. In equation (4) and (5), 
the length of LW should be constrained. If the length of 
LW was 4 or more than 4 syllables, the length of LW 
would be 4. A sequence of each LW may have two 
alternatives, combine or not to combine. In a sequence of 

N LWs, we may have 2N paths, the optimal combination 
was therefore found by dynamic programming. 
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3.3. Results and analysis 
 
Cross-validation was used in our experiments. The 599 
paragraphs were split into six subparts. 6 data sets were 
tested in turn. Each data set had 5 subparts about 499 
paragraphs as training data, and one subpart about 100 
paragraphs as testing data. Performance evaluation is 
based on precision, recall and F-score. 

boundaryPW  predicted of numbers
boundaryPW  predictedcorrectly  of numbersPrecision =  (6) 

boundaryPW  real of numbers
boundaryPW  predictedcorrectly  of  numbersRecall =      (7) 

RecallPrecision
Recall*Precision*2

+
=− scoreF                                     (8) 

The average results from the statistical model are showed 
in Table 5. 
 
Table 5. Results of statistical model 

 F01 F02 M01 M02 
Recall 86.99% 88.55% 85.92% 85.24% 
Precision 92.46% 91.28% 89.70% 90.72% 
F-score 89.64% 89.89% 87.76% 87.88% 

Compare to Table 4, the results by the statistical model 
have slight edge over the rule-based model. To further 
improve the model, we looked further into the speech data 
for prosodic patterns and found that quadri-syllabic LWs 
such as idiomatic phrases were usually broken into two 
disyllabic PWs. For example, the idiom “一脈相傳” should 
be segmented into two PWs “一脈” and “相傳”. Table 6 
showed the results of the statistical model with adjustment 
for multi-syllabic PWs where precision, recall and F-score 
were improved though by a slight margin. 
 
Table 6. Results in statistical model with long LW 
segmentation 

 F01 F02 M01 M02 
Recall 88.46% 89.99% 87.48% 86.67% 
Precision 91.83% 90.59% 89.20% 90.10% 
F-score 90.11% 90.28% 88.31% 88.34% 

In order to test how our model performs in comparison 
with other models, we replicated the models by Qian et al 
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[8]. Their two statistical rule-based methods, Simple POS 
set and Word length indicated POS set, used bi-gram 
statistic of POS and length of word to determine whether 
two consecutive LWs form a PW. To decide whether two 
LWs should be merged, a threshold θ , was used. In our 
replication, best results were obtained when θ =0.5. Two 
features, POS tagging and the length of the word were 
taken into account for both statistical models. The greatest 
difference existed in the constraint of the length of the 
word, our statistical model could combine more than 3 
LWs.  
The results are showed in Tables 7 and 8. Comparison 
between our statistical model and Qian et al’s models 
(Tables 6 vs. Tables 7 and 8) indicated that our precision 
was much better than both Simple POS set and Word 
length indicated POS set. Our F-score was better as well. 
Overall, our model yielded better performance in general. 
 
Table 7. Replication results of Simple POS set (Qian et al 
2001) with the threshold at 0.5 

 F01 F02 M01 M02 
Recall 90.23% 90.93% 87.75% 88.61% 
Precision 82.01% 80.13% 78.32% 80.62% 
F-score 85.88% 85.15% 82.72% 84.38% 

 
Table 8. Replication results of Word length indicated 
POS set (Qian et al 2001) with the threshold at 0.5 

 F01 F02 M01 M02 
Recall 90.29% 91.15% 87.99% 88.76% 
Precision 83.13% 81.39% 79.57% 81.81% 
F-score 86.53% 85.97% 83.54% 85.12% 

 
4. CONCLUSION AND FUTURE WORKS 
 
We believe that successful prediction of a lower level 
prosodic unit PW is a first step towards building prosody 
models from text. Nevertheless, we conceive the 
production of speech rhythm as a multidimensional task, 
phrase grouping of the upper layers in the rhythmic 
structure and the temporal organization of the speech 
seem to be the main impediments. Rhythm is defined as 
an organization of meaning across the alternation of 
accents, sound effects, and prosodic organization [10, 11]. 
In other words, rhythm should be seen as a key prosodic 
tool for signaling an overarching semantic organization. 
The higher layers of the rhythmic structure reveal the 
more intensive correlation with the semantics. To clarify 
the exact nature of relations between semantics and 
prosody become an essential work in the future. 
In this paper, by means of statistical approach, results 
from our statistical model rather than rule-based model 
perform quite good prediction in word grouping. Also, the 
data-driven statistical model allowed more room for 
extensions than the linguistic rule-based model. In next 

stage, we will focus on how phrase grouping could be 
piled up from word grouping and disambiguate semantic 
relation in phrase grouping.  
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