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Abstract 

Fillers are related to discourse planning, signaling interactive 

speech acts and turn management. This article presents 

experiments on automatic detection of fillers which are the most 

common nonverbal cues in spontaneous conversation. We 

propose an attention-based long-short term memory (LSTM) 

neural network and modern Universal Transformer model to 

detect fillers in frame level. Experimental results show that F1 

scores up to 0.81 in test set for fillers can be achieved. 

Additionally, the character error rate (CER) in the automatic 

speech recognition experiment (ASR) decreases given that filler 

occurrences are eliminated in speech signal and both automatic 

detection output results and golden scripts information are used 

for the experiment.  

Index Terms: filler detection, speech recognition, sequence 

labeling 

1. Introduction 

Fillers [1] are often used by the speakers for expressing 

hesitation, uncertainty, or simply keeping the floor in 

conversation, unlike ordinary spoken words that usually signify 

lexical meaning. Detection of fillers is an important task in 

decoding semantic interpretation of conversations (e.g. [2-5]). 

They are often signals for hesitation of the speaker and can be 

used to help detect the flow of conversation [6]. 

In recent years, neural network based approaches such as 

Deep Neural Network (DNN) [7], Convolutional Neural 

Network (CNN) [8], and Long-Short Term Memory (LSTM) [9, 

10] have been applied to filler detection, in which they 

outperform other conventional machine learning approaches. In 

particular, LSTM has been widely used in time series 

forecasting, often called sequence labeling or classification task. 

LSTM is a specific recurrent neural network (RNN) 

architecture. Simple RNN has the ability to process contextual 

information from past inputs (and future inputs in the 

bidirectional RNNs) [11]. However, the vanishing and the 

exploding gradient problems limit the capability of long 

sequence process in RNN [12]. LSTM is a redesigned RNN 

architecture that addresses vanishing gradient problems around 

special ‘memory cell’ units [13]. In addition, LSTM with 

attention mechanism has been proved to be more powerful  for 

sequence to sequence prediction problems [14].  

However, sequential computation of LSTM prevents 

parallelization across elements of the input sequence. Therefore, 

the Universal Transformer [15], a modern sequence-to-

sequence attention-based model depending entirely on self-

attention without using CNN or RNN, achieves state-of-the-art 

results on a wide range of sequence modeling tasks. This model 

is a generalization of the Transformer model [16] that extends 

its theoretical capabilities. The Transformer model is more 

parallelizable and it requires significantly less time for training. 

In this study, we use vanilla LSTM, attentive LSTM, and 

Universal Transformer for the task of detecting fillers in a 

Mandarin conversational speech corpus. 

We used the Sinica Mandarin Conversational Dialogue 

Corpus (Sinica MCDC8) [17] for the present study. The corpus 

contains eight free conversations with sophisticated lexical 

transcriptions and manually edited word boundary information. 

Paralinguistic sounds (Para) and discourse-related items such as 

long pauses, laughter, fillers, particles, and discourse marker 

are annotated in the transcripts. Examples of paralinguistic 

sounds and discourse-related items occurred in the Sinica 

MCD8 are shown in Table 1. 

Table 1: Paralinguistic and discourse-related items 

Para Filler Particle Marker 

(breathe) UHN A NA 

(那) (clear_throat) UHNN BA NE 

(cough) UHM E NEI 

(exhale) UHMM EP NA GE (那個) 

(inhale) NHN EN SHE ME 
(什麼) 

(laugh) NHNN LA SHEN ME 

(pause) MHM WA ZHE (這) 

(silence) MHMM YA ZHE GE (這個) 

 

Mandarin has a relative large number of utterance-final 

discourse particles. Some of them share similar phonetic 

representation with fillers that are often used in other languages, 

e.g., uh and uhn in English. For instance, EN in Table 2 can 

appear in the utterance-initial and -final positions. The variant 

MHM with a bilabial nasal onset and coda used within the 

utterance is more close to conventional filler definition. In our 

study, we include feedback uses in our filler data. Table 3 is an 

excerpt of the filler MHMHM as a feedback. A sequential 

labeling model was proposed to detect discourse markers (the 

right column of Table 1) in the Sinica MCDC8 by employing 

both acoustic and word information [18]. Different from the 

previous work, the objective of this study is to automatically 

detect fillers by only using acoustic information from the signal.  
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Table 2: Different locations of fillers.  

Location Utterance 

Utterance-

initial 
EN 陽明山 那邊 也 有 露天的 游泳池 

EN Yang-Ming-Mountain there also have open-

air swimming-pool 

(There is also an open air swimming pool on the 

Yang-Ming Mountain.) 

Utterance-

medial 
因為 有 一些 女孩子 在 花費上 MHM  

不是 會 很 節制 

Because have some girls in spending MHM 

NEGATION can very self-control 

(Because some girls are not very self-control in 

spending.) 

Utterance-

final 
他們 本來 都 在 台北 後來 就 EN 

They originally all live Taipei later then EN 

(They were all live in Taipei) 

Table 3: Example of filler use in conversation  

Speaker Turn 

A 

譬如 說 你 買到 電影 票 比較慢 的話 

For-example say you buy movie ticket slower if 

(For example, if you need to wait for movie to start.) 

B MHMHM 

A 

你 可以 在 旁邊 逛一逛 

You can in nearby walk-around 

(You can go shopping nearby.) 

B 

對 對 還有 對面 還有 新光三越 百貨 

Yes yes still-more opposite still-more Shin-Kong-

Mitsukoshi Department-Store 

(That’s right! There is also the Shin Kong 

Mitsukoshi Department Store across the street.) 

The structure of this paper is as follows: Section 2 describes 

the detection method in detail. Section 3 describes the 

experimental setup. Then we present and analyze our 

experimental results. Finally, we draw some conclusions and 

discuss further applications. 

2. Methods 

In this study, we consider the detection task as a time series 

sequence labeling. Each frame in the utterance is represented in 

time steps. We use the filler detection result of the vanilla 

LSTM as our baseline. Then, we apply attention-based LSTM 

and modern Universal Transformer and compare the results. 

2.1. Input Feature 

Mel-frequency cepstral coefficients (MFCCs) are widely used 

for speech processing tasks [19]. This feature extraction mimics 

the human auditory system. The advantage of the MFCCs is that 

it captures main characteristics of human speech with a 

relatively low complexity. In our experiment, we use the 

MFCCs as our speech feature set. The feature extraction 

process has been implemented in Python using the librosa 

library [20]. The length of frame is 32 milliseconds.  

2.2. Attentive LSTM 

LSTM may use forget/input/output gate and cell memory to 

memorize time dependent information when processing 

sequential data. While applying LSTM to the encoder-decoder 

architecture for a sequence to sequence model, the input 

sequence is compressed in a fixed-length internal representation 

(context vector). This design limits the performance for long 

input sequences. Thus, attention mechanism [14] is purposed to 

address this problem by paying selective attention to the inputs 

and relate them to items in the output sequence. 

2.3. Universal Transformer 

The architecture of the Universal Transformer is shown in 

Figure 1. It is based on the encoder-decoder architecture 

commonly used in sequence-to-sequence models. The recurrent 

encoder block and decoder block are responsible for input and 

output sequences, respectively. Each block will iteratively 

compute T steps. After T steps, the output of the encoder is an 

intermediary vector for multi-head attention layer in the 

decoder, and the decoder computes output probabilities by 

Softmax layer. 

 

Figure 1: Architecture of Universal Transformer 

The two-dimensional coordinate embedding consists of 

position and time-step embedding. In order to make use of the 

order of the sequence, positional encoding is added to input 

sequence. Universal Transformer employs an Adaptive 

Computation Time (ACT) [21] mechanism to implement 

dynamic halting by using time-step embedding to modulate the 

number of computational steps needed for processing. 

Universal Transformer depends entirely on self-attention 

without using CNN or RNN. Multihead Self-Attention enables 

the model to jointly attend to information from different 

representation subspaces at different positions of the same input 

sequence. Scaled dot-product attention which combines queries 

Ｑ, keys Ｋ and values Ｖ is adopted as basic attention function 

as follows 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Ｑ,Ｋ,Ｖ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
ＱＫ

𝑇

√𝑑
)Ｖ, (1) 

where d is the dimension of queries, keys and values. Multi-

Head Self-Attention with k heads is purposed in [16],  

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (Ｈ
𝑡
) 
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                        = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑘)Ｗ
Ｏ

 (2) 

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (ＱＷ
𝑖

Ｑ
,ＫＷ

𝑖

Ｋ
,ＶＷ

𝑖

Ｖ
) (3) 

where the state Ｈ
𝑡
 is map to queries, keys and values with 

affine projections using matrices Ｗ
Ｑ

∈ ℝ𝑑×𝑑∕𝑘, Ｗ
Ｋ

∈

ℝ𝑑×𝑑∕𝑘, Ｗ
Ｖ

∈ ℝ𝑑×𝑑∕𝑘, Ｗ
Ｏ

∈ ℝ𝑑×𝑑 . 

Layer normalization [22] is a normalization method that 

computes the mean and variance from all of the summed inputs 

to the neurons in a layer to improve the training speed for 

various neural network models. Dropout [23] layer provides a 

simple regularization method to avoid overfitting by randomly 

dropping out nodes during training. Transition function is 

applied to fully-connected layer with shared weights across 

position and time. Because the recurrent transition function can 

be applied an arbitrary number of times, Universal Transformer 

can have variable depth, while the standard Transformer only 

comprises of fixed stack of Transformer blocks. 

3. Experimental Setup 

3.1. Sinica MCDC8 

Our experiment was conducted by using speech data of the 

Sinica MCDC8. The conversation partners (9 females and 7 

males, aged between 16 and 46) met each other for the first time. 

Speakers were free to choose and change topics during their 

conversation in about one hour each. 

The conversations in the Sinica MCDC8 were segmented 

into speaker turns. The speech content was orthographically 

transcribed with annotations of discourse-related items and 

paralinguistic sounds. There are four different sub-groups of 

filler variants, as shown in Table 4, each with/o nasal onset and 

coda. Multi-syllabic fillers are transcribed with repeated ‘H’, 

corresponding to the number of syllables. Table 4 also lists the 

group and the numbers of fillers in the Sinica MCDC8. As 

mentioned above, we also include filler-like particles, listed in 

Table 5 in our experiments. 

Table 4: Occurrences of fillers in the Sinica MCDC8  

Group1 # Group2 # Group3 # Group4 # 

UHN 74 UHM 1 NHN 161 MHM 836 

UHNN 88 UHMM 4 NHNN 49 MHMM 326 

UHNHN 65 UHMHM 2 NHNHN 188 MHMHM 453 

      MHMHMHM 114 

      MHMHMHMHM 29 

Table 5: Filler-like Particles. 

Particles # 

E 206 

EP 3 

EN 249 

EIN 95 

EI 419 

 

The audio files of the Sinica MCDC8 are segmented into 

speaker turns, with information about Inter-Pause Units (IPU) 

boundaries, separated by silent pauses and paralinguistic 

sounds. The IPUs are regarded as the utterance unit in this study. 

There are 16,423 utterances, where 20% of the overall 

utterances are used as testing data and the remaining 80% of the 

data are used as training data. 

3.2. Evaluation 

One of the main challenges of the experiments is that the classes 

are unbalanced. Fillers account for less than 6% of the overall 

utterances. Therefore, we use precision, recall, and F1 score (F1) 

to evaluate the performance of filler detection.  

3.3. Observation the influence of fillers on ASR 

As we are also interested in the influence of fillers on ASR 

performance, we eliminated all filler occurrences in the Sinica 

MCDC8 by using the golden transcripts. The filler eliminated 

utterances were input to Google cloud speech API with the 

default setting for our ASR experiment. In addition, we also 

used Praat [24] to eliminate automatic detected filler and 

applied their ASR results to compare with the golden scripts. 

Figure 2 shows the design of our experiment. 

 

Figure 2: Experimental flow chart 

4. Results 

Table 6 shows the performance of filler detection with vanilla 

LSTM, attentive LSTM and Universal Transformer on testing 

data on frame level.  

Table 6: Results of fillers detection on frame level  

Model Precision Recall F1 

Vanilla LSTM 0.8239 0.6447 0.7234 

Attentive LSTM 0.8468 0.7528 0.7970 

Universal Transformer 0.8481 0.7758 0.8103 

 

The results in Table 7 clearly reflect the impact of fillers on 

ASR performance. Fillers are noisy, especially when they occur 

in the middle of utterances. In addition, we also compared the 

results of fillers detection with vanilla LSTM, attentive LSTM 

and Universal Transformer. The results show the CER only 

slightly decreased on attentive LSTM and Universal 

Transformer while vanilla LSTM did not improve the 

performance at all. 
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Table 7: CER on filler-eliminated speech data (IPU) 

Eliminating 

fillers by 
Overall Initial Medial Final 

Golden 

Transcripts 
29.86% 23.73% 36.38% 30.05% 

Vanilla 

LSTM 
31.94% 26.24% 38.20% 32.17% 

Attentive 

LSTM 
31.90% 26.21% 38.14% 31.17% 

Universal 

Transformer 
31.66% 26.29% 37.71% 31.72% 

Original 

speech data 
31.93% 26.73% 37.95% 31.47% 

5. Conclusions and future work 

Experiments on automatic filler detection were conducted to 

Mandarin conversational speech by using the attention based 

LSTM and modern Universal Transformer. The preliminary 

results reported in this paper will be further elaborated to 

develop efficient models that can be used to automatically 

detect fillers from spontaneous speech flow. Applications can 

be accordingly implemented to detect hesitation event and 

discover useful cues of memory recall processes in 

conversational speech. 
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