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Abstract 
This paper presents a hybrid workflow for lexical tone 
evaluation of 3-year-old Chinese-speaking children. The speech 
data of 123 children were phonetically transcribed for phoneme 
accuracy as well as perceptually evaluated for tone accuracy by 
human judgement. A transformer-based tone model with a 
BERT input architecture was built using the speech data and 
tested on twelve children with low speech performance. The 
accuracy rates between the judged tones and the predicted tones 
output by our model were high for the overall evaluation. More 
consistent patterns between judged and predicted tones were 
observed for high-register Tone 1 and Tone 4 for low-register 
Tone 2 and Tone 3. We also found that a child’s tone production 
ability is consistently reflected in relation to consonants, vowels, 
and syllables. Tone accuracy is more related to vowel accuracy 
than consonant accuracy. In particular, the most diverse 
differences in tone, consonant, and vowel accuracies were 
observed for Tone 3.  
Index Terms: tone evaluation, F0, contour representations, 
BERT input architecture, Transformers, speech assessment, 
screening tool 

1. Introduction 
Phonological development in children is conventionally 
evaluated using pronunciation error patterns. Additionally, on 
the basis of empirical evidence, interdisciplinary studies 
combining phonetic research and assistive technology for 
speech assessment of children have recently attracted intensive 
attention with computational models constructed using 
annotated data. Ground truth labeling, such as labeling 
“typically developing” or “at risk” groups, speech disorder 
severity levels, intelligibility levels or nonnative speech, 
significantly contributes to the effectiveness of model training 
and the improvement of diagnostic assessment systems [1, 2, 3, 
4, 5]. Acoustics-based models have been proven useful for 
making contributions to speech assessment. Acoustic features 
that reflect the phonetic properties of speech are used to provide 
assistive support in disease evaluation and progression 
monitoring in dysarthria-related diseases such as Parkinson's 
disease and multiple sclerosis [6].  

In this study, we are concerned with lexical tone evaluation 
in Mandarin Chinese. Mandarin Chinese is a tonal language 
spoken in mainland China and Taiwan. A written character 
represents a syllable with a specific lexical tone. 
Comprehending a word means being able to interpret the 
meaning of the phonetic sequences and their associated tone 
sequences. Therefore, the evaluation of a child’s speech 
performance should also account for the accuracy or 
acceptability of the production of lexical tones. To examine 

lexical tones, we propose a hybrid workflow that includes both 
perceptually judged results and assistive technology that uses 
acoustic features. In addition, considering tone and segment 
production in three-year-old children, we will also demonstrate 
that predictions using the tone model are feasible, as tone 
patterns are similar to those judged by humans. 

A syllable in Mandarin Chinese has a maximum number of 
four phonemic segments, i.e., an onset, a glide, a vowel, and a 
coda of /n/ or //. The phoneme inventory of Mandarin Chinese 
consists of two glides /j, w/, 15 vowels /i, ɨ, ɯ, u, y, a, o, , e, ɚ, 
ai, ei, au, ou, ye/, and 22 consonants /p, ph, t, th, k, kh, f, s, ʂ, ç, 
x, ʐ, ts, tsh, tʂ, tʂh, tç, tçh, m, n, , l/ [7, 8]. The tone inventory 
consists of four full lexical tones: Tone 1, Tone 2, Tone 3, Tone 
4, and a neutral tone that represents high-level, low-rising, low-
dipping, high-falling, and short mid-level tonal contours. Tones 
are conventionally transcribed by diacritics added to the main 
vowel, e.g., mā (mother), má (numb), mă (horse), mà (scold), 
and ma (particle) in the order of Tone 1 to Tone 4, respectively, 
and the neutral tone.  

Previous developmental studies on articulation and 
phonology of Chinese-speaking children mostly focused on the 
acquisition of speech sounds and tones separately [9, 10, 11, 12, 
13, 14, 15]. Some have also reported error patterns related to 
syllable structure, assimilation, and substitution processes. 
Earlier research results on Taiwanese Mandarin-speaking 
children have pointed out that syllable-initial consonants /p, t, 
k, kʰ, m, n, l, x, tɕ/ and all lexical tones are acquired at the age 
of three [13], [14]. Tone 1 and Tone 4 are acquired earlier than 
Tone 2 and Tone 3 based on evidence obtained from the results 
of perceptual judgment and acoustic analysis [13, 16]. 
Moreover, tones produced in monosyllables and in continuous 
speech are likely to have different contour patterns due to 
contextual tonal coarticulation [14, 17].  

In verbal communication, tone production is essential in the 
process of meaning decoding, so the assessment of 
phonological development should also account for connections 
between tones and syllables. However, this type of assessment 
has not yet been explicitly conducted. In this study, we will 
show that acoustics-based tone model predictions may actually 
be able to assist the practice of tone evaluation together with the 
traditional assessment practice of phonological transcription 
and judgment-based assessment.  

2. A hybrid lexical tone evaluation 
workflow 

The phonetic form of a tonal syllable is mapped to the 
designated word meaning by simultaneously processing the 
syllable and the produced tone contour. While the syllable and 
tone contour may differ in many ways, they are connected to 
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each other. Lexical tones are perceived via pitch information 
referring to the contour of the fundamental frequency (F0), and 
phone sequences may be processed at different linguistic levels, 
e.g., the syllable-initial consonant, the vocalic part, the entire 
syllable or the entire word.  

We propose a hybrid technology-assisted workflow by 
making use of phonologically transcribed phonemes, assessed 
tones, and model-predicted tone categories, as shown in Figure 
1. It is our intention to show that the proposed workflow is a 
starting point for developing a technology-assisted diagnostic 
screening tool that helps detect young children’s speech 
problems at an early stage, on the one hand. On the other hand, 
the output of the tone model will deepen our understanding 
about the nature of lexical tones in speech acquisition research. 

 
Figure 1: Workflow of lexical tone evaluation. 

There are prerequisites for this workflow. Professional 
judgment and tone model prediction are based on the same tone 
inventory. The tone inventory is regarded as an innate system 
shared by human and model processing modules. In terms of 
judgment and prediction results, the notion of a "correct tone" 
is defined differently. To judge the accuracy of lexical tones, 
we refer to the lexical access to word meaning. If tone 
production clearly inhibits the comprehension of the word 
meaning, it is considered "incorrect"; otherwise, it is referred to 
as "properly produced". We take tone category into account in 
an implicit manner in the perceptual experiment.  

A tone model is trained and tested using only the acoustic 
information of F0, without any other spectral information from 
the signal. For our tone model, if the predicted tone corresponds 
to the underlying tone category, it is labeled “correct”; 
otherwise, it is labeled “incorrect”. Tone category is explicitly 
considered in tone model construction. To assess the 
relationship between segment and tone production, statistics of 
judged tones and predicted tones are analyzed with 
segment/syllable productions derived from our phonological 
transcription results. 

3. Speech recording, data annotation and 
tone model 

3.1. Data annotation 

A total of 123 three-year-old children from Taipei City and New 
Taipei City in Taiwan participated in a speech recording project 
that was approved by the Institutional Review Board on 
Humanities and Social Science Research at Academia Sinica 
AS-IRB-HS07-107079. None of the children had known 
diagnosed diseases related to language, hearing, or cognitive 
development. All of the children passed a pure-tone 
audiometric hearing test with a GSI 18 Screening Audiometer 

at 1, 2, and 4 kHz at 20 dB on both ears. CapiAssess is an online 
system that facilitates speech recording with illustrative 
pictures. It also facilitates phonological transcription as well as 
automatically analyzing phonological development patterns by 
comparing standard pronunciation with the transcribed results. 
For speech collection, CapiAssess was installed on a MacBook 
Air Pro Retina 13.3 laptop with a Sony ECM MS907 
microphone [18]. A picture-naming task was conducted to 
record the Sinica Child Balanced Wordlist [19], which consists 
of 70 children-friendly multisyllabic words. The words are 
scattered across different semantic fields that are familiar to 
children, including animals, food, transportation, body parts, 
movement, objects, games, locations, and natural phenomena. 
For each child, 148 syllables were recorded. Speech data were 
digitized at a sampling rate of 16 kHz and automatically 
processed by the ILAS phone aligner with manual verification 
of syllable boundaries. 

Phoneme transcription was performed on 18,204 syllables 
by a phonetician assisted with spectrogram visualization in 
PRAAT [20]. As a result, a total of 2,803 syllables were 
transcribed with at least one segment pronounced incorrectly. 
When a syllable is evaluated with any improperly pronounced 
segment, it is deemed incorrect in the calculation of percentages 
of correct syllables (PCS). In the present study, three-year-old 
children acquire syllable-initial consonants /p, pʰ, t, tʰ, tɕ, m, n/, 
glides /j, w/, and vowels /e, ei, i, a, ə, u, ai, y/, based on a passing 
threshold of 90%. Neither of the nasal coda passed the threshold. 
These results are slightly different from previous 
developmental studies [10, 11, 12, 14]. For later analysis, we 
also calculated the percentages of correct vowels (PCV) and 
consonants (PCC) for each child according to the results of 
phonological transcription 

For tone judgment, two annotators evaluated the tones in 
parallel. The agreement rate was 97% with a Cohen’s kappa of 
0.42. The low kappa value is due to the extremely imbalanced 
numbers of correct and incorrect cases. Inconsistent cases in the 
annotation project were then discussed among the annotators 
and the first author until consensus was reached. As a result, 
190 of the 18,204 tokens of tones were judged “incorrect”. We 
calculated the percentages of correct tones (PCT-judged) for 
each child. Similar to the results reported in previous research 
on tone acquisition, all but four children were able to produce 
90% of the tones correctly. But only thirteen out of the 123 
children were able to achieve the threshold for vowels and 
consonants. 

3.2. CONTOURNET for tone prediction 

For the implementation of our tone model, we used the data 
from the twelve subjects with the lowest PCV as our testing data. 
The remaining 90% of the data were used for model training 
(80%) and validation (10%). For our later analysis, the 
percentages of correct tones predicted by our tone model, noted 
as PCT-predicted, were accordingly calculated. For our tone 
model, we propose the CONTOURNET model, which is similar to 
BERTSUM [21], to abstract the contours of lexical tones. As 
shown in Figure 2, the model takes a sequence of multitonal 𝑓𝑓0 
values as input and extends BERT [22] by inserting multiple 
[CLS] symbols to learn (or summarize) individual tonal 
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contours and using separator tokens [SEP] to indicate tone 
boundaries in the Token Embeddings. The input f0 values were 
first log-transformed and then normalized to [0, 1] using the 
speaker-specific ceiling and floor f0 values determined at 0.1% 
and 99.9% of the range, respectively, abbreviated as 
NormLogF0. 

The first embedding is the Pitch Embeddings that directly 
linearly transforms 1-d 𝑓𝑓0  values to the hidden states of the 
dimensionality as dmodel = 256, where the undefined pitch values 
[-] and the padded values at the end of every utterance are zeros. 
Second, for the Token Embeddings, except the embeddings for 
[CLS] and [SEP], all the estimated, nonzero pitch tokens and 
all the remaining zeros are specifically indicated as embeddings 
of [VAL] and [NAN]. Next, as was chosen in [23], we used the 
sinusoid positional embeddings as the Positional Embeddings 
to mark the pitch ordering. Finally, we used interval segment 
embeddings (the Segment Embeddings) similar to that in 
BERTSUM to distinguish the odd tones from the even ones in an 
utterance with two symbols EA and EB. These four embeddings 
are summed to a single input pitch vector 𝑥𝑥𝑖𝑖  and fed to a 
bidirectional Transformer with multistacked layers: 

 
ℎ�𝑙𝑙 = LN(ℎ𝑙𝑙−1 + MHAtt(ℎ𝑙𝑙−1))           (1) 

ℎ𝑙𝑙 = LN(ℎ�𝑙𝑙 + FFN(ℎ�𝑙𝑙))          (2) 
 

where ℎ0 = 𝑥𝑥  are the input pitch vectors; LN stands for the 
layer normalization; MHAtt is the multihead attention; the 
superscript l indicates the depth of the stacked layer (L=4); and 
FFN is the feed-forward network. Therefore, contextual contour 
representations are learned hierarchically, where lower 
Transformer layers focus on adjacent pitches and higher layers 
in combination with self-attention, which focuses on the 
multitonal context of tonal coarticulation effects. Finally, 
additional 2 inter-tone Transformer layers are stacked on top of 
current BERT outputs to capture utterance-level influences for 
reshaping contour abstractions. The contextual T vectors are 
later fed to a fully connected projection layer (with tanh) for 
shuffling the features for tone prediction 

We trained the CONTOURNET model on a 52-hour corpus of 
255 adults’ read speech that was developed at Feng Chia 

University with the original tone model framework [24]. Then, 
the experiment was carried out by adapting the contour 
representations to children’s speech in the softmax layer (SL) 
or from the very beginning stage of the model (FULL). When 
training from scratch (Scratch), the contour representations are 
only learned from our small-scale children’s speech dataset. As 
shown in Table 1, we find that training from scratch is robust in 
terms of abstracting the contour of the four lexical tones: Tone 
1 (T1), Tone 2 (T2), Tone 3 (T3), and Tone 4 (T4). The model 
achieves the best performance despite the lack of pretrained 
representations using this training strategy. Nearly two-thirds 
of the neutral tones are retrieved. In the next section, we analyze 
the data in the test set from the twelve children described above 
using the predicted tone outputs from the Scratch training 
strategy.  

Table 2: Accuracy rates of tones and segments. 

 Accuracy (%) of 

 
judged tone  

vs   
predicted tone  

vs 

 
predicted 

tone 
consonant vowel consonant vowel 

All 79.6 70.4 74.9 62.7 65.4 
T1 83.6 61.5 77.1 56.2 67.5 
T2 78.4 77.4 75 69.4 69.2 
T3 71.9 69.7 71.9 57.8 56.1 
T4 84.8 72.1 74.1 66.9 66.7 

  

Table 1: CONTOURNET model performance. 
 Accuracy 

(%) 
F1-score (%) 

  T1 T2 T3 T4 Neutral 
Fine-tuning on SL 62.5 67.9 55.5 50.2 72.4 0 
Fine-tuning on FULL 80.6 80.4 80.4 76.9 85.4 58.3 
From Scratch 81 81.8 82.1 75.8 84.4 61.5 

  

 
 

Figure 2: Transformer-based CONTOURNET for tone prediction. [CLS], [SEP], [VAL] and [NAN],  
are defined following the architecture of BERT. 
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4. Results and discussion 

We examine the accuracy rates of judged tones and transcribed 
consonants and vowels from CONTOURNET model predictions. 
The results are summarized in Table 2. First, the prediction of 
our tone model reflects the assessment using human judgment. 
The overall rate is 79.6%. The accuracy rates descend in the 
order of Tone 4 > Tone 1 > Tone 2 > Tone 3. Second, the 
accuracy rates of both judged and predicted tones are more 
closely correlated with vowel production than consonant 
production. With respect to individual tones, the largest gap 
between judged and predicted tones as well as between tone and 
segment production is observed for Tone 3 data. It seems that 
the tone judgment results are more related to segment 
production (both vowels and consonants) than tone model 
prediction. It may be due to the fact that our tone model only 
makes use of F0, but for human judgment, spectral features that 
represent segment information are also available to the 
annotators. If an additional phoneme model were built to 
supplement our tone model, performance would likely rise.  

As the goal of a clinical screening tool is to evaluate the 
speech performance of each child, we plotted the PCT-judged 
and PCT-predicted results of data from the test set, as shown in 
Figure 3. When comparing PCC, PCV, and PCS, the differences 
between the PCT-judged and PCT-predicted results are 
relatively stable, with a gap that does not exceed 27% of the 
human judgment-based results. As the model prediction is 
consistently similar to that of human judgment, we further 
observed the patterns of PCT, PCC, and PCV for individual 
tones. Figure 4 shows that the PCT-judged and PCT-predicted 
results show consistent differences in Tone 1 and Tone 4 but 
display diverse scattering patterns in Tone 2 and Tone 3. The 
variance of the PCT results among these twelve subjects in 
relation to the PCV results is more convergent in relation to the 
PCC results. This pattern is most clearly exhibited in Tone 4. 

Previous developmental studies have confirmed that Tone 
1 and Tone 4 are acquired earlier than Tone 2 and Tone 3 [13, 
14]. Our data provide new support for this result. The acoustic 
pattern processed by our tone model is the closest to the 
perceived tone contours for Tone 1 and Tone 4, as the accuracy 
rates between judged tones and predicted tones are the highest. 
This suggests that the divergence between the acoustic and 
auditory inputs may be the lowest in high level Tone 1 and high-
falling Tone 4. The rising Tone 2 and the multivariant Tone 3 
cause more divergent patterns for the tone model and tone 
judgment. This may also indicate that the high-register levels of 

Tone 1 and Tone 4 may be more easily perceived and less 
misleading than the low-register levels of Tone 2 and Tone 3. 

5. Conclusions 
The accuracy rate between the judged and predicted tones is 
approximately 80%. With more training data, we believe that it 
is possible to fine tune the model and apply it as a screening 
tool. Most developmental studies focus on consonants. But in 
our study tone accuracy is related more to vowels than 
consonants, suggesting that Mandarin-speaking children may 
have different developmental processes for consonants, vowels, 
and tones. The last two linguistic units may be more closely 
correlated. The accuracy rates between judged and predicted 
tones and between tones and segments drop more for Tone 3 
than for the other tones. Tone 3 has three surface forms in 
speech production, including canonical Tone 3, Sandhi Tone 3, 
and half Tone 3. Thus, dealing with acoustic modeling of Tone 
3 variations is a challenging task for a screening tool. Our 
present tone model only uses F0 information, no other spectral 
information. However, there are clear correlations between tone 
and segment accuracy. The findings reported in our study 
suggest that tone model-assisted evaluation may actually serve 
as an efficient and low-cost means of screening children’s 
speech.   
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Figure 3: Comparison of judged and predicted tones in relation 

to PCC (top), PCV (middle) and PCS (bottom). 

 

 
 

 
Figure 4: PCT of the four lexical tones in relation to PCC (top) 

and PCV (bottom). 
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