
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Unifying Amplitude and Phase Analysis: A
Compositional Data Approach to Functional
Multivariate Mixed-Effects Modeling of Mandarin
Chinese

P. Z. Hadjipantelis, J. A. D. Aston, H. G. Müller & J. P. Evans

To cite this article: P. Z. Hadjipantelis, J. A. D. Aston, H. G. Müller & J. P. Evans (2015) Unifying
Amplitude and Phase Analysis: A Compositional Data Approach to Functional Multivariate Mixed-
Effects Modeling of Mandarin Chinese, Journal of the American Statistical Association, 110:510,
545-559, DOI: 10.1080/01621459.2015.1006729

To link to this article:  https://doi.org/10.1080/01621459.2015.1006729

© 2015 The Author(s). Published with
license by Taylor & Francis© P. Z.
Hadjipantelis, J. A. D. Aston, H. G. Müller,
and J. P. Evans

View supplementary material 

Published online: 06 Jul 2015. Submit your article to this journal 

Article views: 1949 View related articles 

View Crossmark data Citing articles: 16 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2015.1006729
https://doi.org/10.1080/01621459.2015.1006729
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2015.1006729
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2015.1006729
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2015.1006729
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2015.1006729
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2015.1006729&domain=pdf&date_stamp=2015-07-06
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2015.1006729&domain=pdf&date_stamp=2015-07-06
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2015.1006729#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2015.1006729#tabModule


Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA

Unifying Amplitude and Phase Analysis: A
Compositional Data Approach to Functional

Multivariate Mixed-Effects Modeling of Mandarin
Chinese

P. Z. HADJIPANTELIS, J. A. D. ASTON, H. G. MÜLLER, and J. P. EVANS

Mandarin Chinese is characterized by being a tonal language; the pitch (or F0) of its utterances carries considerable linguistic information.
However, speech samples from different individuals are subject to changes in amplitude and phase, which must be accounted for in any
analysis that attempts to provide a linguistically meaningful description of the language. A joint model for amplitude, phase, and duration
is presented, which combines elements from functional data analysis, compositional data analysis, and linear mixed effects models. By
decomposing functions via a functional principal component analysis, and connecting registration functions to compositional data analysis,
a joint multivariate mixed effect model can be formulated, which gives insights into the relationship between the different modes of variation
as well as their dependence on linguistic and nonlinguistic covariates. The model is applied to the COSPRO-1 dataset, a comprehensive
database of spoken Taiwanese Mandarin, containing approximately 50,000 phonetically diverse sample F0 contours (syllables), and reveals
that phonetic information is jointly carried by both amplitude and phase variation. Supplementary materials for this article are available
online.

KEY WORDS: Functional data analysis; Linguistics; Multivariate linear mixed models; Phonetic analysis; Registration.

1. INTRODUCTION

Mandarin Chinese is one of the world’s major languages
(Central Intelligence Agency 2012) and is spoken as a first lan-
guage by approximately 900 million people, with considerably
more being able to understand it as a secondary language. Spo-
ken Mandarin Chinese, in contrast to most European languages,
is a tonal language (Su and Wang 2005). The modulation of the
pitch of the sound is an integral part of the lexical identity of a
word. Thus, any statistical approach of Mandarin pitch attempt-
ing to provide a pitch typology of the language, must incorporate
the dynamic nature of the pitch contours into the analysis (Gu,
Hirose, and Fujisaki 2006; Prom-On, Xu, and Thipakorn 2009).

Pitch contours, and individual human utterances generally,
contain variations in both the amplitude and phase of the re-
sponse, due to effects such as speaker physiology and semantic
context. Therefore, to understand the speech synthesis process
and analyze the influence that linguistic (e.g., context) and non-
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linguistic effects (e.g., speaker) have, we need to account for
variations of both types. Traditionally, in many phonetic analy-
ses, pitch curves have been linearly time normalized, removing
effects such as speaker speed or vowel length, and these time
normalized curves are subsequently analyzed as if they were
the original data (Xu and Wang 2001; Aston, Chiou, and Evans
2010). However, this has a major drawback: potentially inter-
esting information contained in the phase is discarded as pitch
patterns are treated as purely amplitude variational phenomena.

In a philosophically similar way to Kneip and Ramsay
(2008), we model both phase and amplitude information jointly
and propose a framework for phonetic analysis based on
functional data analysis (FDA; Ramsay and Silverman 2005)
and multivariate linear mixed-effects (LME) models (Laird and
Ware 1982). Using a single multivariate model that concurrently
models amplitude, phase, and duration, we are able to provide
a phonetic typology of the language in terms of a large number
of possible linguistic and nonlinguistic effects, giving rise to
estimates that conform directly to observed data. We focus on
the dynamics of F0; F0 is the major component of what a human
listener identifies as speaker pitch (Jurafsky and Martin 2009)
and relates to how fast the vocal folds of the speaker vibrate. We
use two interlinked sets of curves; one set consisting of time nor-
malized F0 amplitude curves and a second set containing their
corresponding time-registration/warping functions registering
the original curves to a universal time-scale. Using methodolog-
ical results from the compositional data literature (Aitchison
1982), a principal component analysis of the centered log ratio
of the time-registration functions is performed. The principal
component scores from the amplitude curves and the time
warping functions along with the duration of the syllable are
then jointly modeled through a multivariate LME framework.
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Figure 1. An example of triplet trajectories from speakers F02 andM02 over natural time. F(emale)02 tonal sequence: 4-5-1, M(ale)02 tonal
sequence: 2-1-4; Mandarin Chinese rhyme sequences [oŋ-@-iou] and [ien-in-ğ], respectively. See supplementary material for full contextual
covariate information.

One aspect of note in our modeling approach is that it is based
on a compositional representation of the warping functions. This
representation is motivated by viewing the registration func-
tions on normalized time domains as cumulative distribution
functions, with derivatives that are density functions, which in
turn can be approximated by histograms arbitrarily closely in the
L2 norm. We may then take advantage of the well-known con-
nection between histograms and compositional data (Leonard
1973; Pawlowsky-Glahn and Egozcue 2006).

The proposed model is applied to a large linguistic corpus
of Mandarin Chinese consisting of approximately 50,000 indi-
vidual syllables in a wide variety of linguistic and nonlinguistic
contexts. Due to the large number of curves, computational con-
siderations are of critical importance to the analysis. The dataset
is prohibitively large to analyze with usual multilevel computa-
tional implementations (Hadfield 2010; Bates et al. 2013), so a
specific computational approach for the analysis of large mul-
tivariate LME models is developed. Using the proposed model,
we are able to identify a joint model for Mandarin Chinese that
serves as a typography for spoken Mandarin. This study thus
provides a robust and flexible statistical framework describing
intonation properties of the language.

The article proceeds as follows. In Section 2, a short review
of the linguistic properties of Mandarin will be given. General
statistical methodology for the joint modeling of phase and am-
plitude functions will then be outlined in Section 3, including
its relation to compositional data analysis and other methods of
modeling phase and amplitude. Section 4 contains the analysis
of the Mandarin corpus where it will be seen that the model
not only provides a method for determining the role of lin-
guistic covariates in the synthesis of Mandarin, but also allows
comparisons between the estimated and the observed curves.
Finally, the last section contains a short discussion of the future
prospects of FDA in linguistics. Further details of the analysis
implemented are given in the supplementary material.

2. PHONETIC ANALYSIS OF MANDARIN
CHINESE

We focus our attention on modeling fundamental frequency
(F0) curves. The amplitude ofF0, usually measured in Hz, quan-
tifies the rate/frequency of the speaker’s vocal folds’ vibration
and is an objective measure of how high or low the speaker’s
voice is. In this study, the observation units of investigation are
brief syllables:F0 segments that typically span between 120 and
210 msec (Figure 1) and are assumed to be smooth and contin-
uous throughout their trajectories. Linguistically our modeling
approach of F0 curves is motivated by the intonation model pro-
posed by Fujisaki (2004) where linguistic, paralinguistic, and
nonlinguistic features are assumed to affect speaker F0 con-
tours. Another motivation for our rationale of combining phase
and amplitude variation comes from the successful usage of
hidden Markov models (HMM; Rabiner 1989; Yoshioka et al.
2012) in speech recognition and synthesis modeling. However,
unlike the HMM approach, we aim to maintain a linear mod-
eling framework favored by linguists for its explanatory value
(Baayen, Davidson, and Bates 2008; Evans et al. 2010) and
suitability for statistical modeling.

Usual approaches segment the analysis of acoustic data. First
one applies a “standard” dynamic time warping (DTW) treat-
ment to the sample using templates (Sakoe 1979), registers the
data in this new universal time scale, and then continues with the
analysis of the variational patterns in the synchronized speech
utterances (Latsch and Netto 2011). In contrast, we apply func-
tional principal component analysis (FPCA; Castro, Lawton,
and Sylvestre 1986) to the “warped” F0 curves and also to their
corresponding warping functions, the latter being produced dur-
ing the curve registration step. These functional principal com-
ponent scores then serve as input for using a multivariate LME
model, allowing a joint modeling of both the phase and ampli-
tude variations.
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Table 1. Covariates examined in relation to F0 production in Taiwanese Mandarin. Tone variables in a 5-point scale representing tonal
characterization, 5 indicating a toneless syllable, with 0 representing the fact that no rhyme precedes the current one (such as at the sentence

start). Reference tone trajectories are shown in the supplementary material section: Linguistic Covariate Information

Effects Values Meaning Notation mark

Fixed effects
Previous tone 0:5 Tone of previous syllable, 0 no previous tone present tnprevious

Current tone 1:5 Tone of syllable tncurrent

Following tone 0:5 Tone of following syllable, 0 no following tone present tnnext

Previous consonant 0:3 0 is voiceless, 1 is voiced, 2 not present, 3 sil/short pause cnprevious

Next consonant 0:3 0 is voiceless, 1 is voiced, 2 not present, 3 sil/short pause cnnext

B2 linear Position of the B2 index break in sentence B2
B3 linear Position of the B3 index break in sentence B3
B4 linear Position of the B4 index break in sentence B4
B5 linear Position of the B5 index break in sentence B5
Sex 0:1 1 for male, 0 for female Sex
Duration linear 10 sec of msec Duration
Rhyme type 1:37 Rhyme of syllable rhymet

Random effects
Speaker N(0, σ 2

speaker) Speaker effect SpkrID
Sentence N(0,σ 2

sentence) Sentence effect Sentence

We analyze a comprehensive speech corpus of Mandarin
Chinese. The Sinica Continuous Speech Prosody Corpora
(COSPRO; Tseng, Cheng, and Chang 2005) was collected at
the Phonetics Lab of the Institute of Linguistics in Academia
Sinica and consists of nine sets of speech corpora. We focus our
attention on the COSPRO-1 corpus; the phonetically balanced
speech database. COSPRO-1 was designed to specifically in-
clude all possible syllable combinations in Mandarin based on
the most frequently used 2- to 4-syllable lexical words. Addi-
tionally, it incorporates all the possible tonal combinations and
concatenations. It therefore offers a high quality speech corpus
that, in theory at least, encapsulates all the prosodic effects that
might be of acoustic interest. Specifically, we analyze 54,707
fully annotated “raw” syllabic F0 curves that were uttered by
a total of five native Taiwanese Mandarin speakers (two males
and three females). Each speaker uttered the same 598 predeter-
mined sentences having a median length of 20 syllables; each
syllable had on average 16 readings.

In total, aside from Speaker and Sentence information, asso-
ciated with each F0 curve are covariates of break index (within
word (B2), intermediate (B3), intonational (B4), and utterance
(B5) segments), its adjacent consonants, its tone, and rhyme
type (Table 1). In our work, all of these variables serve as poten-
tial scalar covariates and with the exception of break counts, the
fixed covariates are of categorical form. The break (or pause)
counts, representing the number of syllables between succes-
sive breaks of a particular type, are initialized at the beginning
of the sentence and are subsequently reset every time a corre-
sponding or higher order break occurs. They represent the per-
ceived degree of disjunction between any two words, as defined
in the ToBi annotations (Beckman, Hirschberg, and Shattuck-
Hufnagel 2006). Break counts are very significant as physiolog-
ically a break has a resetting effect on the vocal folds’ vibrations;
a qualitative description of the break counts is provided in Table
S.1 of the supplementary material.

3. STATISTICAL METHODOLOGY

3.1 A Joint Model

The application of functional data analysis (FDA) in the
field of Phonetics, while not wide-spread, is not unprecedented;
previous functional data analyses included lip-motion (Ram-
say et al. 1996), analysis of prosodic effects (Lee, Byrd, and
Krivokapic 2006), speech production (Koening, Lucero, and
Perlman 2008) as well as basic language investigation based
solely on amplitude analysis (Aston, Chiou, and Evans 2010).
FDA is, by design, well suited as a modeling framework for
phonetic samples as F0 curves are expected to be smooth. Con-
current phase and amplitude variation is expected in linguistic
data and as phonetic datasets feature “dense” measurements
with high signal-to-noise ratios (Ramsay and Silverman 2005),
FDA naturally emerges as a statistical framework for F0 mod-
eling. Nevertheless in all phonetic studies mentioned above, the
focus of the phonetic analysis has been almost exclusively the
amplitude variations (the size of the features on a function’s tra-
jectory) rather than the phase variation (the location of the fea-
tures on a function’s trajectory) or the interplay between the two
domains.

To alleviate the limitation of only considering amplitude,
we use the formulation presented by Tang and Müller (2009)
and introduce two types of functions, wi and hi associated
with our observed curve yi, i = 1, . . . , N , where yi is the ith
curve in the sample of N curves. For a given F0 curve yi ,
wi is the amplitude variation function on the domain [0, 1]
while hi is the monotonically increasing phase variation func-
tion on the domain [0, 1], such that hi(0) = 0 and hi(1) = 1.
For generic random phase variation or warping functions h
and time domains [0, T ], T also being random, we con-
sider time transformations u = h−1( t

T
) from [0, T ] to [0, 1]

with inverse transformations t = T h(u). Then, the measured
curve yi over the interval t ∈ [0, Ti] is assumed to be of the
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form

yi(t ) = wi

(
h−1
i

(
t

Ti

))
⇔

wi(u) = yi(Tihi(u)), i = 1, . . . , N, (3.1)

where u ∈ [0, 1] and Ti is the duration of the ith curve. A curve
yi is viewed as a realization of the amplitude variation func-
tion wi evaluated over u, with the mapping h−1

i (·) transforming
the scaled real time t onto the universal/sample-wide time-scale
u. In addition, each curve can depend on a set of covariates,
fixed effectsXi , such as the tone being said, and random effects
Zi , where such random effects correspond to additional speaker
and context characteristics. While each individual curve has its
own length Ti , which is directly observed, the lengths entering
the functional data analysis are normalized and the Ti are sub-
sequently included in the modeling as part of the multivariate
linear mixed effects framework.

In our application, the curves yi are associated with various
covariates, for example, tone, speaker, and sentence position.
These are incorporated into the model via the principal compo-
nent scores that result from adopting a common principal com-
ponent approach (Flury 1984; Benko, Härdle, and Kneip 2009),
where we assume common principal components (across co-
variates) for the amplitude functions and another common set
(across covariates) for phase functions (but these two sets can
differ). We use a common PCA framework with common mean
and eigenfunctions so that all the variation in both phase and
amplitude is reflected in the respective FPC scores. These ideas
have been previously used in a regression setting (although not
in the context of registration) (Benko, Härdle, and Kneip 2009;
Aston, Chiou, and Evans 2010; Chen and Müller 2014). As will
be discussed in Section 4.2, this is not a strong assumption in
this application. Of the covariates likely present in the model,
tone is known to affect the shape of the curves (indeed it is in
the phonetic textual representation of the syllable), and there-
fore the identification of warping functions is carried out within
tone classes as opposed to across the classes, as otherwise very
strong (artifactual) warpings will be introduced.

As a direct consequence of our generative model (Equation
1), wi dictates the size of a given feature and h−1

i dictates the
location of that feature for a particular curve i. We assume that
wi and hi are both elements ofL2[0, 1]. Thewi can be expressed
in terms of a basis expansion:

wi(u) = μw(u) +
∞∑
j=1

Awi,jφj (u), (3.2)

where μw(u) = E{w(u)}, φj is the jth basis function, and Awi,j
is the coefficient for the ith amplitude curve associated with the
jth basis function. The hi are a sample of random distribution
functions that are square integrable but are not naturally repre-
sentable in a basis expansion in the Hilbert spaceL2[0, 1], since
the space of distribution functions is not closed under linear
operations. A common approach to circumvent this difficulty is
to observe that log( d

du
h(u)) is not restricted and can be modeled

as a basis expansion in L2[0, 1]. A restriction however is that
the densities hi have to integrate to 1, therefore the functions
si(u) = log( d

du
hi(u))) are modeled with the unrestricted basis

expansion:

si(u) = μs(u) +
∞∑
j=1

Asi,jψj (u), (3.3)

whereμs(u), ψk , andAsi,j are defined analogously toμw(u), φk ,
andAwi,j , respectively, but for the warping rather than amplitude
functions. A transformation step is then introduced to satisfy the
integration condition, which yields the representation:

hi(u) =
∫ u

0 e
si (u′)du′

∫ 1
0 e

si (u′)du′
(3.4)

for the warping function hi . Clearly different choices of bases
will give rise to different coefficients A, which then can be
used for further analysis. A number of different parametric ba-
sis functions can be used as basis; for example, Grabe et al.
advocated the use of Legendre polynomials (Grabe, Kochanski,
and Coleman 2007) for the modeling of amplitude. We advo-
cate the use of a principal component basis for both wi and si
in Equations 2.3 and 3.3, as will be discussed in the next sec-
tions, although any basis can be used in the generic framework
detailed here. However, a principal components basis does pro-
vide the most parsimonious basis in terms of a residual sum of
squares like criterion (Ramsay and Silverman 2005). We note
that to ensure statistical identifiability of the model (Equation
3.1), several regularity assumptions were introduced in Tang
and Müller (2008, 2009), including the exclusion of essentially
flat amplitude functions wi for which time-warping cannot be
reasonably identified, and more importantly, assuming that the
time-variation component that is reflected by the random vari-
ation in hi and si asymptotically dominates the total variation.
In practical terms, we will always obtain well-defined estimates
for the component representations in Equations 3.2 and 3.3, and
their usefulness hinges critically on their interpretability; see
Section 5.

For our statistical analysis, we explicitly assume that each
covariateXi influences, to different degrees, all of the syllable’s
components/modes as well as influencing the syllable’s duration
Ti . Additionally, as mentioned above in accordance with the Fu-
jisaki model, we assume that each syllable component includes
speaker-specific and sentence-specific variational patterns; we
incorporate this information in the covariates Zi . Then the gen-
eral form of our model for a given sample curve yi of duration
Ti with two sets of scalar covariates Xi and Zi is

E{wi(u)|Xi, Zi} = μw(u) +
∞∑
j=1

E{Awi,j |Xi, Zi}φj (u), (3.5)

and

E{si(u)|Xi, Zi} = μs(u) +
∞∑
j=1

E{Asi,j |Xi, Zi}ψj (u). (3.6)

Truncating expansions (3.5) and (3.6), to Mw and Ms compo-
nents, respectively, is a computational necessity and simplifies
the implementation. Curves are then reduced to finitely many
scoresAwij , A

s
ij and these score vectors then act as surrogate data

for curveswi and si . The final joint model for amplitude, phase,
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and syllable duration is then formulated as

E{[Awi , Asi , Ti]|Xi, Zi} = XiB + Zi�, � ∼ N (0, ��),

(3.7)

where Awi and Asi are the vectors of component coefficients for
the ith sample. Here, B (a k × p matrix, where k is the number
of fixed effects in the model and p is the number of multivariate
components in the mixed effects model, p = Mw +Ms + 1,
where the “1” arises from the additional duration component
in the model) is the parameter matrix of the fixed effects and
� (a l × p matrix, where l is the number of random effects in
the model) contains the coefficients of the random effects and is
assumed to have mean zero, while �� is the covariance matrix
of the amplitude, phase, and duration components with respect
to the random effects.

The process as a whole is summarized in Figure 2.

3.2 Amplitude Modeling

In our study, amplitude analysis is conducted through a func-
tional principal component analysis of the amplitude variation
functions. Qualitatively, the random amplitude functions wi are
the time-registered versions of the original F0 samples. Us-
ing FPCA, we determine the eigenfunctions that correspond to
the principal modes of amplitude variation in the sample and
then use a finite number of eigenfunctions corresponding to the
largest eigenvalues as a truncated basis, so that representations
in this basis will explain a large fraction of the total variation.
Specifically, we define the kernel Cw of the covariance operator
as

Cw(u, u∗) = E{(w(u) − μw(u))(w(u∗) − μw(u∗))} (3.8)

and by Mercer’s theorem (Mercer 1909), the spectral decompo-
sition of the symmetric amplitude covariance function Cw can
be written as

Cw(u, u∗) =
∞∑

pw=1

λpwφpw (u)φpw (u∗), (3.9)

where the eigenvalues λpw are ordered by declining size and the
corresponding eigenfunction is φpw . Additionally, the eigen-
values λpw allow the determination of the total percentage of
variation exhibited by the sample along the pth principal com-
ponent and whether the examined component is relevant for
further analysis. As will be seen later, the choice of the number
of components is based on acoustic criteria (Black and Hunt
1996; Kochanski 2006) with direct interpretation for the data,
such that components that are not audible are not considered.
Having fixed Mw as the number of φ modes/eigenfunctions to
retain, we use φ to compute Awi,pw , the amplitude projections
scores associated with the ith sample and its pwth correspond-
ing component (Equation (3.10)) as

Awi,pw =
∫

{wi(u) − μw(u)}φpw (u)dt,

where as before μw(u) = E{w(u)}, (3.10)

where a suitable numerical approximation to the integral is used
for practical analysis.

3.3 Phase Modeling

When examining the warping functions it is important to
note that we expect the mean of the random warping function
to correspond to the identity (i.e., the case of no warping).
Therefore, assuming their domains are all normalized to [0,1],
with t = T h(u), this assumption is

u = E{h(u)}, (3.11)

and this allows one to interpret deviations of h from the identity
function as phase distortion. This clearly also applies conceptu-
ally when working with the function s(u). As with the amplitude
analysis, phase analysis is carried out using a principal compo-
nent analysis approach. Using the eigenfunctions of the random
warping functions si , we identify the principal modes of varia-
tion of the sample and use those modes as a basis to project our
data to a finite subspace. Directly analogous to the decomposi-
tion of Cw, the spectral decomposition of the phase covariance
function Cs is

Cs(u, u∗) =
∞∑
ps=1

λpsψps (u)ψps (u
∗), (3.12)

where the ψps are the eigenfunctions and the λps are the eigen-
values, ordered in declining order. The variance decomposition
through eigencomponents is analogous to that for the amplitude
functions. As before we will base our selection processes not on
an arbitrary threshold based on percentages but on an acoustic
perceptual criteria (Quene 2007; Jacewicz, Fox, and Wei 2010)
for perceivable speed changes. If one retains Ms eigencompo-
nents in the expansion (3.6), the corresponding functional prin-
cipal component scores for the ith warping or phase variation
function wi are obtained as (3.13):

Asi,ps =
∫

{si(u) − μs(u)}ψps (u)dt,

where as before μs(u) = E{s(u)}. (3.13)

It is worth stressing that our choice of the number of compo-
nents to retain will be dictated by an external criterion that is
specific to the phonetic application, rather than being determined
by a purely statistical criterion such as fraction of total variance
explained. Purely data-driven approaches have been developed
(Minka 2001) as well as a number of different heuristics (Can-
gelosi and Goriely 2007) for less structured applications, where
no natural and interpretable choice is available.

3.4 Sample Time-Registration

The estimation of the phase variation/warping functions is
as in Tang and Müller (2008), as implemented in the routine
WFPCA in PACE (Tang and Müller 2009). There, one defines
the pairwise warping function gi ′,i(t) = hi ′(h

−1
i (t)) as the 1-to-

1 mapping from the ith curve’s time-scale to that of the i ′th
by minimizing a distance (usually selected as L2 distance) by
warping the time-scale of the ith curve as closely as possible to
that of the i ′th curve. The inverse of the average gi ′,i(·) (Equation
(3.15)) for a curve i then can be shown to yield a consistent
estimate of the time-warping function hi that is specific for
curve yi and corresponds to a map between individual-specific
warped time to absolute time (Tang and Müller 2008).
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Figure 2. Summary of the overall estimation procedure resulting in the estimates of the functional principal components and scores via the
covariates in the linear mixed effect model.

The gi ′,i(·), being time-scale mappings, have a number
of obvious restrictions on their structure. First, gi ′,i(0) = 0
and gi ′,i(1) = 1. Second, they should be monotonic, that is,
gi ′,i(tj ) � gi ′,i(tj+1), 0 � tj < tj+1 � 1. Finally,E[gi ′,i(t)] = t .
This final condition is necessary for representing the warping
function hi through its inverse h−1

i :

h−1
i (t) = E[gi ′,i(t)|hi(t)] (3.14)

with sample version:

ĥ−1
i (t) = 1

N∗

N∗∑
i ′=1

ĝi ′,i(t), N∗ ≤ N, (3.15)

where N∗ is the number of sample pairwise registrations used
to obtain the estimate. In small datasets, all the curves can be
used for the pairwise comparisons that lead to (3.15), but in a
much larger dataset such as the one in our phonetic application,
only a random subsample of curves of size N∗ is used to obtain
the estimates for computational reasons.

Aside from the pairwise alignment framework we employ
(Tang and Müller 2008), we have identified at least two alter-
native approaches based on different metrics, the square-root
velocity function metric (Kurtek et al. 2012) or area under the
curve normalization metric (Zhang and Müller 2011), which
can be used interchangeably, depending on the properties of the
warping that are considered most important in specific applica-
tion settings. Indeed it has been seen that considering warping
and amplitude functions together, based on the square-root ve-
locity metric, can be useful for classification problems (Tucker,
Wu, and Srivastava 2013). However, we need to stress that each
method makes some explicit assumptions to overcome the non-
identifiability between the hi and wi (Equation (3.1)) and this
can lead to significantly different final estimates.

3.5 Compositional Representation of Warping Functions

To apply the methods to obtain the time warping functions
in Section 3.4 and their functional principal component repre-
sentations in Section 3.3, we still need a suitable representation
of individual warping functions that ensures that these func-
tions have the same properties as distribution functions. For this
purpose, we adopt step function approximations of the warping
functions hi , which are relatively simple yet can approximate
any distribution function arbitrarily closely in the L2 or sup
norms by choosing the number of steps large enough. A natural

choice for the steps is the grid of the data recordings, as the
phonetic data are available on a grid. The differences in lev-
els between adjacent steps then give rise to a histogram that
represents the discretized warping functions.

This is where a novel connection to the proposed compo-
sitional decompositions arises. Based on standard composi-
tional data methodology (centered log-ratio transform) (Aitchi-
son 1982), the first difference �hi,j = hi(tj+1) − hi(tj ) of a
discretized instance of hi over an (m+ 1)-dimensional grid is
used to evaluate si as

si,j = log
�hi,j

(�hi,1 ·�hi,2 . . . �hi,m)
1
m

j = {1, . . . , m} (3.16)

the reverse transformation being:

hi,j+1 = esi,j∑
j e

si,j
, hi,1 = 0. (3.17)

This ensures that monotonicity (hi,j < hi,j+1), and boundary re-
quirements (hi,1 = 0, hi,m+1 = 1) are fulfilled as required in the
pairwise warping step; this compositional approach guarantees
that an evaluation will always remain in the space of warping
functions. The sum of the first differences of all discretized hi
warping functions is equal to a common C, and thus �hi is an
instance of compositional data (Aitchison 1982).

We can then employ the centered log-ratio transform for the
analysis of the compositional data, essentially dividing the com-
ponents by their geometric means and then taking their loga-
rithms. The centered log-ratio transform has been the estab-
lished method of choice for the variational analysis of com-
positional data; alternative methods such as the additive log-
ratio (Aitchison 1982) or the isometric log-ratio (Egozcue et al.
2003) are also popular choices. In particular, the centered log-
ratio, as it sums the transformed components to zero by defini-
tion, presents itself as directly interpretable in terms of “time-
distortion,” negative values reflecting deceleration and positive
values acceleration in the relative phase dynamics. Clearly, this
summation constraint imposes a certain degree of collinear-
ity in our transformed sample (Filzmoser, Hron, and Reimann
2009); nevertheless it is the most popular choice of compo-
sitional data transformation (Aitchison 1983; Aitchison and
Greenacre 2002) and allows direct interpretation as mentioned
above.
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Figure 3. The multivariate mixed effects model presented exhibits a crossed (nonbalanced) random structure. The vowel-rhyme curves (V)
examined are cross-classified by their linguistic (Sentence—Pi) and their nonlinguistic characterization (Speaker—Si).

3.6 Further Details on Mixed Effects Modeling

Given an amplitude-variation function wi , its correspond-
ing phase-variation function si , and the original F0 curve du-
ration Ti , each sample curve is decomposed into two mean
functions (one for amplitude and one for warping) and an
Mw +Ms + 1 := p vector space of partially dependent mea-
surements arising from the scores associated with the eigen-
functions along with the duration. Here, Mw is the number of
eigencomponents encapsulating amplitude variations,Ms is the
number of eigencomponents carrying phase information, and
the 1 refers to the curves’ duration. The final linear mixed effect
model for a given sample curve yi of duration Ti and sets of
scalar covariates Xi and Zi is

[Awi,k, A
s
i,m, Ti] = XiB + Zi� + Ei,

� ∼ N (0, ��), E ∼ N (0, �E), (3.18)

�E being the diagonal matrix of measurement error variances
(Equation S.2). The covariance structures�� and�E are of par-
ticular forms; while �E (Equation S.2) assumes independent
measurement errors, the random effects covariance (Equation
S.1) allows a more complex covariance pattern (see supplemen-
tary material for relevant equations).

As observed in previous work (Hadjipantelis, Aston, and
Evans 2012), the functional principal components for the am-
plitude process are uncorrelated among themselves and so are
those for the phase process. However, between phase and am-
plitude they are expected to be correlated, and will also be
correlated with time T . Therefore, the choice of an unstructured
covariance for the random effects is necessary; we have found
no theoretical or empirical evidence to believe any particular
structure such as a compound symmetric covariance structure,
for example, is present within the eigenfunctions and/or dura-
tion. Nevertheless our framework would still be directly applica-
ble if we choose another restricted covariance (e.g., compound
symmetry) structure and if anything it will become computa-
tionally easier to investigate as the number of parameters would
decrease.

Our sample curves are concurrently included in two nested
structures: one based on “speaker” (nonlinguistic) and one
based on “sentence” (linguistic) (Figure 3). We therefore have
a crossed design with respect to the random-effects structure of
the sample (Brumback and Rice 1998; Aston, Chiou, and Evans

2010), which suggests the inclusion of random effects:

An×p = XN×kBk×p + ZN×l�l×p + EN×p, (3.19)

where p is the multivariate dimension, k is the number of fixed
effects, and l is the number of random effects, as before. This
generalization allows the formulation of the conditional esti-
mates as

A |� ∼ N (XB + Z�,�E) (3.20)

or unconditionally and in vector form for
−→
A as

−→
ANp×1 ∼ N ((Ip ⊗X)

−→
B Np×1,	Np×Np),

	 = (Ip ⊗ Z)(�� ⊗ Il)(Ip ⊗ Z)T + (�E ⊗ IN ), (3.21)

where X is the matrix of fixed effects covariates, B is the matrix
of fixed effects coefficients, Z is the matrix of random effects
covariates, � is the matrix of random effects coefficients (a sam-

ple realization dictated by N (0, ��)), �� = D
1
2
� P� D

1
2
�

T

, the
random effects covariance matrix, D� is the diagonal matrix
holding the individual variances of random effects, P� is the
correlation matrix of the random effects between the series in
columns i, j , and �E is the diagonal measurement errors co-
variance matrix. Kronecker products (⊗) are used to generate
the full covariance matrix 	 of

−→
A as the sum of the block

covariance matrix for the random effects and the measurement
errors.

3.7 Estimation

Estimation is required in two stages: obtaining the warping
functions and multivariate mixed effects regression estimation.
Requirements for the estimation of pairwise warping functions
gk,i were discussed in Section 3.4. In practical terms, these re-
quirements mean that: (i) gk,i(·) needs to span the whole domain,
(ii) we cannot go “back in time,” that is, the function must be
monotonic, and (iii) the time-scale of the sample is the average
time-scale followed by the sample curves. With these restrictions
in place, we can empirically estimate the pairwise (not absolute)
warping functions by targeting the minimizing time transforma-
tion function gk,i(·) as ĝk,i(t) = argming D(yk, yi, g),where the
“discrepancy” cost function D is defined as

Dλ(yk, yi, g) = E

{∫ 1

0
(yk(g(t); Tk) − yi(t ; Ti))

2

+λ(g(t) − t)2dt |yk, yi, Tk, Ti
}
, (3.22)
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λ being an empirically evaluated nonnegative regularization
constant, chosen in a similar way to Tang and Müller (2008); see
also Ramsay and Li (1998); Ti and Tk being used to normalize
the curve lengths. Intuitively the optimal gk,i(·) minimize the
differences between the reference curve yi and the “warped”
version of yk subject to the amount of time-scale distortion
produced on the original time-scale t by gk,i(·). Having a suf-
ficiently large sample of N∗ pairwise warping functions gk,i(·)
for a given reference curve yi , the empirical internal time-scale
for yi is given by Equation (3.15), the global warping function
hi being easily obtainable by simple inversion of h−1

i . It is worth
noting that in Mandarin, each tone has its own distinct shape;
their features are not similar and therefore should not be aligned.
For this reason, the curves were warped separately per tone, that
is, realizations of Tone1 curves where warped against other re-
alizations of Tone1 only, the same being applied to all other four
tones. In order for the minimization in (3.22) to be well defined,
it is essential to have a finite-dimensional representation for the
time transformation/warping functions g. Such a representation
is provided by the compositional centered log transform and this
makes it possible to implement the minimization.

Finally to estimate the mixed model via the model’s likeli-
hood, we observe that usual maximum likelihood (ML) estima-
tion underestimates the model’s variance components (Patterson
and Thomson 1971). We therefore use restricted maximum like-
lihood (REML); this is essentially equivalent to taking the ML
estimates for our mixed model after accounting for the fixed ef-
fects X. The restricted maximum (log)likelihood estimates are
given by maximizing the following formula:

LREML(θ ) = −1

2
[p(N − k) log(2π )

+ log(|�|) + −→
T�−1−→ ], (3.23)

where � = KT	K and  = KTA; with K being the
“whitener” matrix such that 0 = KT (Ip ⊗X) (Searle, Casella,
and McCulloch 2006). Based on this, we concurrently esti-
mate the random effect covariances while taking into account
the possible nondiagonal correlation structure between them.
Nevertheless because we “remove” the influence of the fixed
effects to compare models with different fixed effects structures
we would need to use ML rather REML estimates. Standard
mixed-effects software such as lme4 (Bates et al. 2013), nlme
(Pinheiro et al. 2013), and MCMCglmm (Hadfield 2010) either do
not allow the kinds of restrictions on the random effects covari-
ance structures that we require, as they are not designed to model
multivariate mixed effects models, or computationally are not
efficient enough to model a dataset of this size and complexity;
we were therefore required to write our own implementation for
the evaluation of REML/ML. Exact details about the optimiza-
tion procedure used to do this are given in the supplementary
material section: Computational aspects of multivariate mixed
effects regression.

4. DATA ANALYSIS AND RESULTS

4.1 Sample Preprocessing

It is important as a first step to ensure F0 curves are “smooth,”
that is, they possess “one or more derivatives” (Ramsay and Sil-

verman 2005). In line with Chiou, Müller, and Wang (2003),
we use a locally weighted least squares smoother to fit local
linear polynomials to the data and produce smooth data-curves
interpolated upon a common time-grid on a dimensionless in-
terval [0, 1]. Guo (2002) presented a smoothing framework pro-
ducing comparable results by employing smoothing splines.
The form of the kernel smoother used is as in Chiou, Müller,
and Wang (2003) with fixed parameter bandwidth estimated
using cross-validation (Izenman 2008) and Gaussian kernel
function.

The curves in the COSPRO sample have an average of 16
readings per case, hence the number of grid points chosen was
16. The smoother bandwidth was set to 5% of the relative curve
length. As is common in a dataset of this size, occasional miss-
ing values have occurred and curves having 5% or more of the
F0 readings missing were excluded from further analysis. These
missing values usually occurred at the beginning or the end of
a syllable’s recording and are most probably due to the delayed
start or premature stopping of the recording. During the smooth-
ing procedure, we note each curve’s original time duration (Ti)
so it can be used within the modeling. At this point, the F0

curve sample is not yet time-registered but has been smoothed
and interpolated to lie on a common grid.

4.2 Model Presentation and Fitting

As mentioned in Section 2, the data consisted of approxi-
mately 50,000 sample curves. However, as can be seen in Fig-
ure S.2, in noncontextual situations, the tones have simple and
distinct shapes. Therefore, registration was not performed on
the dataset in its entirety but rather using each tone class as its
own registration set. This raises an interesting discussion as to
whether the curves are now one common sample, or rather a
group of five separate samples. However, if we assume that the
five tone groups all have common means and principal compo-
nents (Benko, Härdle, and Kneip 2009) for both amplitude and
phase variations, then this alleviates any issues with the use of
separate registrations. This assumption substantially simplifies
the model and is not particularly restrictive in that the ability of
the vocal folds to produce very different pitch contours is lim-
ited, and as such it is likely that common component contours
are present in each group.

It is possible to develop many different linguistic models
for this data. However, the following model is proposed, as it
accounts for all the linguistic effects that might be present in
a dataset of this form (Hadjipantelis, Aston, and Evans 2012),
which is a particular case of (3.18) where the covariates are now
specified:

[Awi,k, A
s
i,m, Ti] = {[tnprevious ∗ tncurrent ∗ tnnext]

+ [cnprevious ∗ tncurrent ∗ cnnext]

+ [(B2) + (B2)2 + (B2)3 + (B3) + (B3)2

+ (B3)3 + (B4) + (B4)2 + (B4)3 + (B5)

+ (B5)2 + (B5)3] ∗ Sex + [rhymet ]}iB
+{[Sentence] + [SpkrID]}i� + Ei. (4.1)

Standard Wilkinson notation (Wilkinson and Rogers 1973) is
used here for simplicity regarding the interaction effects; [K*L]
represents a short-hand notation for [K + L + K:L] where the
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Figure 4. Corresponding amplitude variation functions w (top row) and phase variation functions h (bottom row) functions for the triples
shown in Figure 1.

colon specifies the interaction of the covariates to its left and
right (Baayen 2008). First, examining the fixed effects struc-
ture, we incorporate the presence of tone-triplets and of con-
sonant:tone:consonant interactions. Both types of three-way in-
teractions are known to be present in Mandarin Chinese and to
significantly dictate tonal patterns (Xu 1999; Torgerson 2005).
We also look at break counts, our only covariate that is not cat-
egorical. A break’s duration and strength significantly affects
the shape of the F0 contour and not just within a rhyme but
also across phrases. Break counts are allowed to exhibit squared
and cubic patterns as cubic downdrift has been previously ob-
served in Mandarin studies (Aston, Chiou, and Evans 2010;
Hadjipantelis, Aston, and Evans 2012). We also model breaks
as interacting with the speaker’s sex as we want to provide
the flexibility of having different curvature declination patterns
among male and female speakers. This partially alleviates the
need to incorporate a random slope as well as a random in-
tercept in our mixed model’s random structure. The final fixed
effect we examine is the type of rhyme uttered. Each syllable
consists of an initial consonant or ∅ followed by a rhyme. The
rhyme contains a vowel followed by -∅/ -n/ -ŋ. The rhyme is the
longer and more sonorous part of the syllable during which the

tone is audible. Rhyme types are the single most linguistically
relevant predictors for the shape of F0’s curve as when com-
bined together they form words, with words carrying semantic
meaning.

Examining the random effects structure we incorporate
speaker and sentence. The inclusion of speaker as a random
effect is justified as factors of age, health, neck physiology, and
emotional condition affect a speaker’s utterance and are mostly
immeasurable but still rather “subject-specific.” Additionally,
we incorporate Sentence as a random effect since it is known
that pitch variation is associated with the utterance context (e.g.,
commands have a different F0 trajectory than questions). We
need to note that we do not test for the statistical significance
of our random effects; we assume they are “given” as any lin-
guistically relevant model has to include them. Nevertheless
if one wished to access the statistical relevance of their inclu-
sion, the χ2 mixtures framework used by Lindquist et al. (2012)
provides an accessible approach to such a high-dimensional
problem, as resampling approaches (bootstrapping) are compu-
tationally too expensive in a dataset of the size considered here.
Fixed effects comparisons are more straightforward; assuming
a given random-effects structure, Akaike information criterion
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physical time domain t.
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Figure 6. W (amplitude) eigenfunctions �: mean function ([0.05, 0.95] percentiles shown in gray) and first, second, third, fourth, fifth, and
sixth functional principal components (FPCs) of amplitude.

(AIC)-based methodology can be directly applied (Greven and
Kneib 2010). Fitting the models entails maximizing REML of
the model (Equation (3.23)).

Our findings can be grouped into three main categories, those
from the amplitude analysis, those from the phase, and those
from the joint part of the model. Some examples of the curves
produced by the curve registration step are given in Figure 4.
However, overall, as can be seen in Figure 5, there is a good cor-
respondence between the model estimates and the observed data
when the complete modeling setup is considered. Small differ-
ences in the estimates can be ignored due to the just noticeable
difference (JND) criteria (see below). The only noticeable de-
parture between the estimates and the observed data is in the
third segment of Figure 5 (left). The sinusoidal difference in
the measured data that is not in the estimate can be directly
attributed to the exclusion of amplitude PC’s five and six, as
these were below the JND criteria. The continuity difference in
the observed curves is not enforced by the model and is hence
not as prominent in the estimates. The general shape is the same
but the continuity yields a sharper change in the observed data
than is expected. It would be of great interest in future research
to extend the ideas of registration to models where both ampli-
tude and warping functions are included as bivariate dependent
random functions.

Empirical findings from the amplitude FPCA: The first ques-
tion one asks when applying any form of dimensionality re-
duction is how many dimensions to retain, or more specifically
in the case of FPCA how many components to use. We take a
perceptual approach. Instead of using an arbitrary percentage of

variation, we calculate the minimum variation in Hz each FPC
can actually exhibit (Tables 2 and 3). Based on the notion of
JND (Buser and Imbert 1992), we use for further analysis only
eigenfunctions that reflect variation that is actually detectable by
a standard speaker (F0 JND: ≈10 Hz; Mw = 4 ). The empirical
wFPCs (Figure 6) correspond morphologically to known Man-
darin tonal structures (Figure S.2) increasing our confidence in
the model. Looking into the analogy between components and
reference tones with more details, wFPC1 corresponds closely
to Tone 1, wFPC2 can be easily associated with the shape
of Tones 2 and 4 and wFPC3 corresponds to the U-shaped
structure shown in Tone 3. wFPC4 appears to exhibit a sinusoid
pattern that can be justified as necessary to move between differ-
ent tones in certain tonal configurations (Hadjipantelis, Aston,
and Evans 2012).

Empirical findings from the phase FPCA: Again the first
question is how many components to retain. Based on exist-
ing JND in tempo studies (Quene 2007; Jacewicz, Fox, and
Wei 2010), we choose to follow their methodology for choos-
ing the number of “relevant” components (tempo JND: ≈ 5%
relative distortion; Ms = 4 ). We focus on percentage changes
on the transformed domain over the original phase domain as it
is preferable to conduct principal component analysis (Aitchi-
son 1983); sFPCs also corresponding to “standard patterns”
(Figure 7). sFPC1 and sFPC2 exhibit a typical variation one
would expect for slow starts and/or trailing syllable utterances
where a decelerated start leads to an accelerated ending of the
word—a catch-up effect—and vice versa. sFPC3 and sFPC4,
on the other hand, show more complex variation patterns that
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Table 2. Percentage of variances reflected from each respective FPC
(first 9 shown). Cumulative variance in parenthesis

Amplitude/(w) Phase/(s)

FPC1 88.67 (88.67) 49.40 (49.40)
FPC2 10.16 (98.82) 19.25 (68.65)
FPC3 0.75 (99.57) 9.02 (77.68)
FPC4 0.22 (99.80) 6.53 (84.19)
FPC5 0.10 (99.90) 4.34 (88.53)
FPC6 0.05 (99.94) 2.98 (91.51)
FPC7 0.02 (99.97) 2.32 (93.83)
FPC8 0.01 (99.98) 1.96 (95.79)
FPC9 0.01 (99.99) 1.29 (97.08)

are most probably rhyme specific (e.g., /-ia/) or associated with
uncommon sequences (e.g., silent pause followed by a Tone 3)
and do not have an obvious universal interpretation. While the
curves in Figure 7 are not particularly smooth due to the dis-
cretized nature of the modeling, as can be seen in Figure S.1
in the supplementary material, the resulting warping functions
after transformation are smooth.

Empirical findings from the Multi-Variate Linear Mixed Ef-
fects (MVLME) analysis: The most important joint findings are
the correlation patterns presented in the covariance structures of
the random effects as well as their variance amplitudes. A strik-
ing phenomenon is the small, in comparison with the residual
amplitude, amplitudes of the Sentence effects (Table 4). This

Table 3. Actual deviations in Hz from each respective FPC (first 9
shown). Cumulative deviance in parenthesis. (Human speech auditory

sensitivity threshold ≈ 10 Hz)

Amplitude/(w)

FPC1 121.16(121.16)
FPC2 66.52 (187.68)
FPC3 31.22 (218.90)
FPC4 17.50 (236.40)
FPC5 9.00 (245.39)
FPC6 4.86 (250.26)
FPC7 3.64 (253.90)
FPC8 2.71 (256.61)
FPC9 1.96 (258.56)

goes to show that pitch as a whole is much more speaker de-
pendent than context dependent. It also emphasizes why certain
pitch modeling algorithms focus on the simulations of “neck
physiology”(Taylor 2000; Fujisaki 2004; Louw and Barnard
2004).

In addition to that we see some linguistically relevant cor-
relation patterns in Figure 8 (also see S.25–S.26 in the sup-
plementary material). For example, wFPC2 and duration are
highly correlated both in the context of Speaker and Sentence-
related variation. The shape of the second wFPC is mostly as-
sociated with linguistic properties (Hadjipantelis, Aston, and
Evans 2012) and a syllable’s duration is a linguistically relevant

Figure 7. (Phase) eigenfunctions �: mean function ([0.05, 0.95] percentiles shown in gray) and first, second, third, fourth, fifth, and sixth
functional principal components (FPCs) of phase. Roughness is due to differentiation and finite grid; the corresponding warping functions in
their original domain are given in Figure S.1 in the supplementary material.
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Table 4. Random effects std. deviations

Estimate wFPC1 wFPC2 wFPC3 wFPC4 Duration sFPC1 sFPC2 sFPC3 sFPC4

Speaker 89.245 6.326 3.655 1.330 2.806 0.289 0.023 0.022 0.030
Sentence 38.674 4.059 0.045 0.102 0.043 0.049 0.043 0.042 0.043
Residual 114.062 44.386 15.399 10.072 4.481 0.959 0.591 0.431 0.370

property itself. As wFPC2 is mostly associated with the slope
of syllable’s F0 trajectory, it is unsurprising that changes in the
slope affect the duration. Moreover, looking at the signs we
see that while the Speaker influence is negative, in the case of
Sentence, it is positive. That means that there is a balance on
how variable the length of an utterance can be to remain com-
prehensible (so, e.g., when a speaker tends to talk more slowly
than normal, the effect of the Sentence will be to “accelerate”
the pronunciation of the words in this case). (See supplemen-
tary material for �Ri ’s definitions.) In relation to that, in the
speaker random effect, sFPC1 is also correlated with duration
as well as wFPC2; yielding a triplet of associated variables.
Looking specifically to another phase component, sFPC2 indi-
cating mid syllable acceleration or deceleration that allow for
changes in the overall pitch patterns, is associated with a syl-
lable’s duration, this being easily interpreted by the face that
such changes are modulated by alterations in the duration of the
syllable itself. Complementary to these phenomena is the rela-
tion between the syllable duration and wFPC1 sentence-related
variation. This correlation does not appear in the speaker effects
and thus is likely due to more linguistic rather than physiolog-
ical changes in the sample. As mentioned previously, wFPC1
can be thought of as dictating pitch-level placement, and the
correlation implies that higher-pitched utterances tend to last
longer. This is not contrary to the previous finding; higher F0

placements are necessary for a speaker to utter a more pro-
nounced slope differential and obviously need more time to be
manifested.

Interestingly, a number of lower magnitude correlation ef-
fects appear to associate wFPC1 and sFPCs. This is something

that needs careful interpretation. wFPC1 is essentially “flat”
(Figure 6, upper middle panel), and as such cannot be easily
interpreted when combined with registration functions. Never-
theless this shows the value in our joint modeling approach for
these data. We concurrently account for all these correlations
during model estimation and, as such, our estimates are less
influenced by artifacts in individual univariate FPCs.

Examining the influence of fixed effects, the presence of adja-
cent consonants was an important feature for almost every com-
ponent in the model. Additionally, certain “domain-specific”
fixed effects emerged also. The syllable’s rhyme type appeared
to significantly affect duration; the break-point information to
influence the amplitude of the F0 curve and specific consonant-
vowel-consonant (C-V-C) triplets to play a major role for phase.
Phase also appeared to be related to the rhyme types but to a
lesser extent (table of B̂ and associated standard errors available
in https://tinyurl.com/COSPRO-Betas).

More specifically regarding duration of the F0 curve, certain
rhyme types (e.g., /-oŋ/, /-iEn/) gave prominent elongation ef-
fects while others (e.g., /-u/, /-ƒ/) were associated with shorter
curves. These are high vowels, meaning that the jaw is more
closed and the tongue is nearer to the top of the mouth than for
low vowels. It is to be expected that some rhymes are shorter
than others and that high vowels with no following nasal con-
sonant would indeed be the shorter ones. The same pattern of
variability in the duration was associated with the adjacent con-
sonants information; when a vowel was followed by a conso-
nant, the F0 curve was usually longer while when the consonant
preceded a vowel, the F0 curve was shorter. Amplitude-related
components are significantly affected by the utterances’ break-

Figure 8. Random effects correlation matrices. The estimated correlation between the variables of the original multivariate model (Equation
(3.19)) is calculated by rescaling the variance-covariance submatrices �R1 and �R2

2 of �� to unit variances. Each cell i, j shows the correlation
between the variance of component in row i that of column j; row/columns 1–4: wFPC1-4, row/columns 5–8: sFPC1-4, row/columns 9: Duration.
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type information; particularly B2 and B3 break types. This is
not a surprising finding; a pitch trajectory, to exhibit the well-
established presence of “down-drift” effects (Fujisaki 2004),
needs to be associated with such variables. As in the case of
duration, the presence of adjacent consonants affects the am-
plitude dynamics. Irrespective of its type (voiced or unvoiced),
the presence of consonant before or after a rhyme led to an
“overall lowering” of the F0 trajectory. Tone type and the sex
of the speaker also influenced the dynamics of amplitude but to
a lesser degree. Finally examining phase, it is interesting that
most phase variation was mainly due to the adjacent consonants
and the rhyme type of the syllable; these also being the covari-
ates affecting duration. This confirms the intuition that as both
duration and phase reflect temporal information, they would
likely be affected by the same covariates. More specifically a
short or a silent pause at the edge of rhyme caused that edge
to appear decelerated while the presence of a consonant caused
that edge to be accelerated. As before, certain rhymes (e.g., /-a/,
/-ai/) gave more pronounced deceleration–acceleration effects.
Tone types, while very important in the case of univariate mod-
els for amplitude (Hadjipantelis, Aston, and Evans 2012), did
not appear significant in this analysis individually; they were
usually significant when examined as interactions. However,
this again illustrates the importance of considering joint mod-
els versus marginal models, as it allows a more comprehensive
understanding of the nature of covariate effects.

In addition, we have reimplemented the main part of the
analysis using the area under the curve methodology of Zhang
and Müller (2011) that had previously been considered in Liu
and Müller (2004) (results shown in supplementary material,
Section S.6) and while the registration functions obtained are
different, the analysis resulted in almost identical insights for
the linguistic roles of wi and si , again emphasizing the need to
consider a joint model.

5. DISCUSSION

Linguistically our work establishes the fact that when trying
to give a description of a language’s pitch, one needs to take care
of amplitude and phase covariance patterns while correcting for
linguistic (Sentence) and nonlinguistic (Speaker) effects. This
need was prominently demonstrated by the strong correlation
patterns observed (Figure 8). Clearly we do not have indepen-
dent components in our model and therefore a joint model is
appropriate. This has an obvious theoretical advantage in com-
parison to standard linguistic modeling approaches such as MO-
MEL (Hirst and Espesser 1993) or the Fujisaki model (Mixdorff
2000; Fujisaki 2004) where despite the use of splines to model
amplitude variation, phase variation is ignored.

Focusing on the interpretation of our results, it is evident
that the covariance between phase and amplitude is mostly due
to nonlinguistic (Speaker-related) rather than linguistic features
(Sentence-related). This is also reflected in the dynamics of
duration, where the influence is also greater (than the Sentence-
related). Our work as a whole presents a first coherent statistical
analysis of pitch incorporating phase, duration, and amplitude
modeling into a single overall approach.

One major statistical issue with the interpretation of our re-
sults is due to the inherent identifiability problem of curve reg-

istration. It is not possible, without extra assumptions, to deter-
mine two functions (amplitude and phase) from one sampled
curve. While this is a problem in general, especially for the rel-
atively simply structured pitch functions that we consider here,
nonidentifiability of the decomposition of total variation into
warping and amplitude variation is a well-known issue. This is
in contrast with situations where functions have distinct struc-
tures such as well-defined peaks (Kneip and Gasser 1992). In
any case, identifiability usually needs to be enforced by model
assumptions or algorithmically. We use pairwise registration,
for which identifiability conditions have been given in Tang
and Müller (2008). In practice, we enforce a unique decompo-
sition algorithmically by first obtaining the warping functions
through the pairwise comparisons, and then attributing the re-
maining variation to amplitude variation that is quantified in a
second step. However, as outlined in Kneip and Ramsay (2008),
while there are many registration procedures that will give rise
to consistent registrations, the most meaningful criterion to de-
termine whether observed variation is due to registration or
amplitude variation is interpretability in the context of specific
applications, which in our application is intrinsically linked to
the nature of the relationship between the linguistic covariates
and the functional principal component scores of both amplitude
and warping functions. Emphasizing the linguistically important
JND criteria, the eigenfunctions associated with the largest four
eigenvalues in both the amplitude and phase bases could all be
detected by the human ear, and as such, would affect the sound
being perceived. Further, because we consider an LME model
for the joint score vector associated with the amplitude and
warping functions, we are able to capture correlations between
the two sets of functions. This joint modeling helps alleviate
some of the concerns regarding overall identifiability, as it is the
joint rather than marginal results that are of interest. The fact
that the scores and FPCs were all linguistically interpretable also
gives further credence to the approach. Additionally, applying
a different registration method (Zhang and Müller 2011) led to
similar linguistic interpretations (see supplementary material,
Section S.6).

In addition to the issue of identifiability, the obvious tech-
nical caveats with this work stem from three main areas: the
discretization procedure, the time-registration procedure, and
the multivariate mixed effects regression. Focusing on the dis-
cretization, the choice of basis is of fundamental importance.
While we used principal components for the reason mentioned
above, there have been questions as to whether a residual sum
of squares optimality is most appropriate. It is certainly an open
question when it comes to application specific cases (Bruns
2004). Aside from the case of parametric bases, nonparamet-
ric basis function generation procedures such as ICA (Hyväri-
nen and Oja 2000) have become recently increasingly more
prominent. These bases could be used in the analysis, although
the subsequent modeling of the scores would become inher-
ently more complex due to the lack of certain orthogonality
assumptions.

Regarding time-registration, there are a number of open ques-
tions regarding the choice of the framework to be used. How-
ever, we have examined two different frameworks and both
these resulted in similar overall conclusions. The choice of the
time-registration framework ultimately relies on the theoretical
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assumptions one is willing to make and on the application and
the samples to be registered. For the linguistic application, we
are concerned with, it is not unreasonable to assume that the
pairwise alignment corresponds well to the intuitive belief that
intrinsically humans have a “reference” utterance onto which
they “map” what they hear to comprehend it (Benesty, Sondhi,
and Huang 2008).

Finally, multivariate mixed effects regression is itself an area
with many possibilities. Optimization for such models is not
always trivial and as the model and/or the sample size increases,
estimation of the model tends to get computationally expen-
sive. In our case, we used a hybrid optimization procedure
that changes between a simplex algorithm (Nelder-Mead) and
a quasi-Newton approach (Broyden-Fletcher-Goldfarb-Shanno;
BFGS) (Kelley 1999) (see supplementary material for more in-
formation); in recent years research regarding the optimization
tasks in an LME model has tended to focus on derivative free
procedures. In a related issue, the choice of covariance structure
is of importance. While we chose a very flexible covariance
structure, the choice of covariance can convey important exper-
imental insights. A final note specific to our problem was the
presence of only five speakers. Speaker effect is prominent in
many components and appears influential despite the small num-
ber of speakers available; nevertheless we recognize that includ-
ing more speakers would have certainly been beneficial if they
had been available. Given that the Speaker effect was the most
important random-effect factor of this study, the inclusion of
random slopes might also have been of interest (Schielzeth and
Forstmeier 2009; Barr et al. 2013). Nevertheless, the inclusion
of generic linear, quadratic, and cubic gender-specific down-
drift effects presented through the break components allows
substantial model flexibility to avoid potential design-driven
misspecification of the random effects.

In conclusion, we have proposed a comprehensive modeling
framework for the analysis of phonetic information in its original
domain of collection, via the joint analysis of phase, amplitude,
and duration information. The models are interpretable due to
the LME structure, and estimable in a standard Euclidean do-
main via the compositional transform of the warping functions.
The resulting model provides estimates and ultimately a typog-
raphy of the shape, distortion and duration of tonal patterns, and
effects in one of the world’s major languages.

SUPPLEMENTARY MATERIAL

Additional supplementary information is provided in the fol-
lowing files:
Supplementary Material Additional figures, information

about covariance structures, and implementation details con-
cerning the multivariate linear mixed effect analysis.

Supplementary Code Code and example analysis for multi-
variate linear mixed effect model.
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