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Tone modeling for speech synthesis aims at providing proper pitch, duration, 
and energy information to generate natural synthetic speech from input text. As 
the speech processing technology progresses rapidly in recent years, some 
advanced tone modeling techniques for MTTS are proposed. In this chapter, two 
modern tone modeling approaches for Mandarin speech synthesis are discussed 
in detail. 

1.  Introduction 

Prosody is an inherent supra-segmental feature of human speech. It carries stress, 
intonation patterns and timing structures of continuous speech which, in turn, 
decide the naturalness and understandability of an utterance. For speech synthesis, 
a general prosody modeling approach is to build a model, in the training phrase, 
to describe the relationship between the hierarchical linguistic structure of 
Chinese text and the hierarchical prosody structure of the corresponding 
Mandarin speech; and in the test phase to first use the model to map from the 
hierarchical linguistic structure extracted from the input text to the hierarchical 
prosody structure, and to then generate prosodic features from the prosody 
structure. In this approach, linguistic features are regarded as affecting factors 
that control the variations of prosodic features and are organized into different 
levels by first using the hierarchical linguistic structure and then mapping to the 
hierarchical prosody structure. The use of hierarchical linguistic structure is 
owing to the fact that it is the well-known and conventional way to analyze text 
and there exist many well-developed techniques and tools, such as lexicon, word 
and POS tagger, parser and so on. A hierarchical linguistic structure can be 
composed of various levels including character, lexical word, word chunk, phrase, 
clause, sentence, paragraph and so on. The use of hierarchical prosody structure 
is to correct the inappropriateness of directly using hierarchical linguistic 

1 

mailto:schen@mail.nctu.edu.tw


Sin-Horng Chen, Chiu-Yu Tseng and Hsin-min Wang 2 
 

structure to control the generation of prosodic features. A hierarchical prosody 
structure may contain the following levels2: syllable, prosodic word, intermediate 
phrase, intonational phrase/breath group, prosodic phrase group and so on.  

There are three main concerns in prosody modeling for Mandarin text-to-
speech (MTTS). One is the hierarchical linguistic structure of Chinese text that 
describes the relationship among linguistic constituents of different levels. 
Currently, the syntax of sentence is a generally accepted hierarchical linguistic 
structure. But some other affecting factors, such as semantic and emotional 
information, and higher-level factors, such as discourse2, are also needed to be 
considered. Another concern is the mapping from the hierarchical linguistic 
structure to the hierarchical prosody structure. This is the major focus of prosody 
modeling for speech synthesis in recent years. Prosodic phrasing and break 
labeling are two related problems in this field.14,22 The other concern is the 
generation of prosodic features from the hierarchical prosody structure. Currently, 
the most popular approach is to superimpose patterns of different hierarchical 
level11. The pattern of each level can be obtained by simply assigning a 
deterministic average pattern extracted from a speech database or by using a 
linear/nonlinear regression method to combine affections of various affecting 
factors.  

In the early stage of MTTS study, prosody modeling is performed using 
relatively simple linguistic structures and prosodic structures.18 Some lower level 
linguistic features, say syllable and word, are used. A prevalent approach is to 
find rules to map from lower-level contextual features, extracted from phonetic 
structure of syllable, tone and word, to syllable/word-level prosodic features 
including pitch contour pattern, energy level pattern, initial/final or syllable 
duration pattern, and inter-syllable pause duration. The estimated prosodic 
feature patterns are lastly superimposed with a sentence-level intonation pitch 
pattern selected from a pattern pool or assigned by rules. The resulting synthetic 
speech is usually far away from high naturalness. 

As the speech processing technology progresses rapidly in recent years, 
sophisticated linguistic structures and prosodic structures are available now. 
Some advanced prosody modeling techniques for MTTS are therefore 
proposed.9,11,19-21 In the following, we discuss two statistical prosody modeling 
methods in detail.  

 

2.  A Five-layer Tone Modeling Method for MTTS 

In Chapter 2b, it was demonstrated that phrase grouping is essential for 
characterizing the prosody of fluent Mandarin speech1. Fig. 1 shows the 
hierarchical organization framework for multiple phrase grouping.  From the top 
down, the layered nodes are: phrase groups (PG), breath groups (BG), prosodic 
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phrases (PPh), prosodic words (PW), and syllables (SYL). These constituents are 
associated with the break indices B5 to B1, respectively.2   

 

Fig.1. A schematic representation of the hierarchical organization for 
multiple phrase grouping of perceived units and boundaries. 

 
Evidence of prosodic phrase grouping has been found in both the adjustments 

of F0 contours and the temporal allocations within and across phrases. Thus, F0, 
duration, and intensity should be considered simultaneously when modeling tone 
behavior in Mandarin speech. In this section, we discuss tone modeling for 
Mandarin speech synthesis and the development of a Mandarin TTS system that 
integrates the prosody processing modules, such as duration modeling, F0 
modeling, intensity modeling, and break predictions. 

2.1. Duration Modeling 

In Tseng3, the analysis of rhythmic patterns in Mandarin speech reveals that 
syllable duration is not only affected by the syllable’s constitution, but also by 
the prosodic structures of the upper layers, namely PW, PPh, BG, and PG. These 
factors allow us to design a layered model for syllable duration. 

The analysis was conducted on a corpus of female read speech of 26 long 
paragraphs or discourses in text. The corpus consisted of 11,592 syllables in total. 
Initially, the speech data was aligned automatically with initial and final phones 
using the HTK toolkit, and then labeled manually by trained transcribers to 
indicate the perceived prosodic boundaries or break indices (BI). 
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Fig.2: Rhythmic patterns in the PW-layer

2.1.1 Intrinsic Statistics of Syllable Duration 

A layered model is used to estimate a syllable’s duration. At the SYL-layer, the 
following linear model is adopted: 

  
  
   2 -      
 3 -      ,

dSyllable intrinsic duration const CTy VTy Ton PCTy PVTy
PTon FCTy FVTy FTon

way factors of the above factor
way factors of the above factor

= + + + + +
+ + + +
+
+

        (1) 

where constd is a reference value, which is dependent on the corpus; CTy, VTy, 
and Ton represent the offset values associated with the consonant type, vowel 
type, and tone of the current syllable, respectively; the prefixes P and F represent 
the corresponding factors of the preceding and following syllable, respectively; 
the 2-way factors consider the joint effect of two single-type factors; and the 3-
way factors consider the joint effect of three single-type factors. There are 

(=36) 2-way factors in total. The 3-way factors that have a negligible 
influence on a syllable’s duration are not considered. Therefore, only three 3-way 
factors are considered, namely, the combination of consonant types, the vowel 
types, and the tones of the preceding, current, and following syllables. As a result, 
there are 49 factors in total. As reported in Tseng

9
2C

3, the SYL-layer model can 
explain about 60% of syllable duration. 

2.1.2 The Effect of the Layered Prosodic Structure 

As shown in Fig. 2, a syllable’s duration is affected by its position within a PW. 
Note that the final syllable in the PW tends to be longer than the other syllables. 

        (2) '   (  ,    )PWDurS Syllable s intrinsic duration f PW length position in PW= +

The PW-layer speeds up the rhythm by subtracting a value derived from Fig. 2. 
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The PPh-layer affects a syllable’s duration in a similar way to the PW-layer. 

In the BG-layer and above, the length of the prosodic unit gets longer and more 
complicated, but the perceived significance only exists in the initial and final PPh 
units. Therefore, we model the BG-layer’s effect as the effect of the initial and 
final PPhs in that layer. The overall model is thus formulated as: 
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        (3) 
'   (  ,    )

             (  ,    )
            ( /   ,    ),

PW

PPh

IFPPh

DurS Syllable s intrinsic duration f PW length position in PW
f PPh length position in PPh
f Initial Final PPh length position in PPh

= +
+
+

where DurS denotes the modeled syllable’s duration; and fPW (·), fPPh (·), and 
fIFPPh (·) denote the portions of the syllable’s duration affected by the function of 
the length of PW, PPh, and initial or final PPh in PG, respectively, together with 
the target syllable’s position within them. 

2.2 F0 Modeling 

Many F0 models of sentence/phrasal intonation are proposed in the literature. We 
use the well-known Fujisaki model as the production model for F0.4 The model 
connects the movements of the cricoid cartilage to the measurements of F0 and is 
thus based on the constraints of human physiology. Therefore, it is reasonable to 
assume that the model can accommodate F0 output in different languages. 
Successful applications of the model on many language platforms, including 
Mandarin, have been reported.5,6

In the case of Mandarin Chinese, phrase commands are used to produce 
intonation at the phrase level, while accent commands are used to predict lexical 
tones at the syllable level.7 Phrasal intonations are superimposed on sequences of 
lexical tones. Therefore, interaction between the two layers causes modifications 
of the F0 during production of the final output. The superimposing of a higher 
level onto a lower level leaves room for even higher levels of F0 specification to 
be superimposed and built. Thus, we can implement the hierarchical organization 
framework of phrase/intonation-grouping in the Fujisaki model by adding a PG 
layer over phrases.8,9 The F0 patterns of phrase grouping can hence be derived. 

2.2.1 Building the Phrasal Intonation Model 

A linear model for the phrase command of the Fujisaki model is adopted as 
follows: 

     0

     

_  
(     

( / /  ).

Ap

PPh

IFPPh

Phrase command Ap const coeff1 pause

coeff2 pre phr coeff3 f min
)f Phrase command position in PPh

f Initial Medial Final PPh

= + ×

+ × + ×
+
+

           (4) 

where constAp is a reference value, which is dependent on the corpus; pause is the 
preceding speechless portion associated with the current phrase command; 
pre_phr is the accumulated phrase command response of previous phrase 
commands as the response of the current phrase command reaches its peak; f0min 
is the minimum fundamental frequency of the utterance; fPPh (·) reflects the 
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position in PPh that the related phrase command is located; and IFPPhf  is for the 
PG intonation which only has a significant effect on the first and last PPh units. 

Fig. 3 shows a comparison between the F0 prediction/production of a PG and 
the original intonation. 

 
Fig. 3. The simulation result of global intonation modeling of a PG. The thin line 
composed of dots represents the original F0 contour, while the thick line composed 
of circles represents the predicted contour 

2.3 Intensity Modeling 

Segmental RMS (root mean square) values are first derived using the ESPS 
toolkit. For each initial and final phone in a syllable, the averaged RMS value is 
calculated by using 10 equally spaced frames in the target segment time span. To 
eliminate the difference in levels between paragraphs, possibly caused by slight 
changes during recording, the RMS values within each paragraph need to be 
normalized to NRMS (normalized RMS) values. Intensity modeling is much the 
same as duration modeling10: 

           
  '   int  

 (  ,    )  
 (  ,    )
 ( /   ,    

PW

PPh

IFPPh

IntS Syllable s intrinsic ensity
f PW length position in PW
f PPh length position in PPh

),f Initial Final PPh length position in PPh

=
+
+
+

 (5) 

where fPW(·), fPPh(·), and fIFPPh(·) denote the portions of syllable intensity affected 
by the function of the length of PW, PPh, and initial or final PPh in PG, 
respectively, together with the target syllable’s position within them. The 
Syllable’s intrinsic intensity is modeled by: 

                     (6) 
'    

2 -      
i

Syllable s intrinsic intensity

const CTy VTy Ton PCTy PVTy PTon

FCTy FVTy FTon way factors of the above factor

= + + + + + +

+ + + +

2.4 The TTS System 

The above duration, F0, and intensity modeling methods are not only useful for 
analyzing prosodic patterns in Mandarin speech, but can also be used to predict 
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prosodic parameters for synthesizing speech according to text input. Given a 
large annotated speech database, the predicted duration, F0, and intensity 
parameters can be used to select appropriate units for direct concatenation or to 
minimize the signal processing requirement. Many research works on unit 
selection have been published. As a large annotated speech database is usually 
infeasible, instead of reviewing existing methods, we present a promising way to 
rapidly adapt a TTS system to new voices by applying the above statistical 
analysis and modeling framework. 

Since the Chinese writing system consists of mono-syllabic logographic 
characters and there are only 1,292 distinct tonal syllables, it is reasonable to 
choose syllables as concatenative units. The duration, F0, and intensity models 
described above are based on the PG structure. Therefore, we need a specially 
designed database so that the TTS system can be implemented to use these 
models11. The time-domain pitch-synchronous overlap-add (TD-PSOLA)12 
method is used to perform prosody modification in the TTS system. 

2.4.1 Speech Database 

The database comprises 1,292*3 Mandarin tonal syllable tokens. Each of the 
1,292 syllables is embedded in a phrase of a three-phrase carrier sentence (i.e., a 
PG of 3 PPhs) in the initial, medial, and final positions, respectively. The speech 
data was recorded by a native female speaker in a sound-proof room. So, for each 
syllable, three tokens are collected. 

2.4.2 Duration Adjustment 

Since the TTS database is from a different speaker, the absolute duration 
predicted by the duration model should be adjusted, while the rhythmic patterns 
in the PG organization should be kept. Because the initial, medial, and final 
syllables were originally collected from the same positions of the PG, their 
duration should not be changed. The duration of the remaining syllables, which 
were originally the first syllable of a PW at the medial position of a medial PPh 
of a 3-PPh PG, should be modified to satisfy the rhythmic pattern in PG 
organization. In this way, to synthesize a PG of m characters (or syllables), the 
duration of the i-th syllable is given by: 

         
( ),  1, ,2*
( ) ,  1 , ,2 2

i

i

i i

mOriDur S i m
DurS

m mOriDur S DF i i m

=
=

− < < < <

⎧⎪
⎨
⎪⎩

                         (7) 

where OriDur(Si) is the corresponding syllable-token’s original duration, and DFi 
is an offset factor calculated by: 
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,1)/ [ (  ,   ) (2

          (  ,   ) (11, 6)

          ( /   ,   )],

d d
i TC MC PW PW

PPh PPh

IFPPh

DF M M f PW length position in PW f

f PPh length position in PPh f

f Initial Final PPh length position in PPh

= × −

+ −

+

 (8) 

where d
TCM  and d

MCM  are, respectively, the mean of syllable duration in the TTS 
corpus and the training corpus; and fPW(·), fPPh(·), and fIFPPh(·) are same as those in 
Eq. (3), which are estimated from the training corpus. 

2.4.3 F0 Adjustment 

In the implementation of F0 adjustment, the comparison is confined to the first F0 
peak of the predicted PG intonation and the average F0 of the first syllable from 
the carrier sentence. The phrase control mechanism for phrase components in the 
Fujisaki model is defined as4: 

     ( ) ( )2 exp ,         for 0
0,                               for 0.p

t t t
G t

t
α α× − ≥

=
<

⎧
⎨
⎩

 (9) 

In Eq. (9), the time required to reach the maximum is 1/α. Therefore, the 
maximum value of the phrase response Ap×Gp(t) is: 

     ( )exp 1 .P Ap α= × × −  (10) 

From Eq. (10), it is clear that P is proportional to Ap when α remains a constant. 
We can estimate the adjustment value ApΔ  of Ap according to the difference 

between the average F0, denoted as Pc, of the first syllable from the carrier 
sentence and the first F0 peak, denoted as Pp, of the predicted PG intonation: 

 1( ) expc pAp P P .α −Δ = − × ×  (11) 

Then, every predicted phrase command must be adjusted according to . 
Note that the adjustment does not change the shape of the intonation, but the 
level moves closer to that of the carrier sentence database. 

ApΔ

2.4.4 Intensity Adjustment 

Intensity adjustment is realized in the same way as duration adjustment. If m 
syllables need to be synthesized, the intensity of the i-th syllable is given by 

 
,

( ),  1, ,
*

( )  1 , ,

2

2 2

i

i

i i

OriInt S i m
IntS

OriInt S IF i i m

m

m m

=
=

− < < < <

⎧⎪
⎨
⎪⎩

 (12) 

where OriInt(Si) is the corresponding syllable-token’s original intensity and IFi is 
an offset factor calculated by 
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  (13) 
[/ (  ,   )

        (  ,   ) (11, 6)

        ( /   ,   )],

i i
i TC M C PW PW

PPh PPh

IFPPh

IF M M f PW length position in PW f

f PPh length position in PPh f

f Initial Final PPh length position in PPh

= × −

+ −

+

(2,1)

where i
TCM  and i

MCM  are, respectively, the mean of the syllable intensity in the 
TTS corpus and the training corpus; and fPW(·), fPPh(·), and fIFPPh(·) are same as 
those in Eq. (5), which are calculated from the training corpus. 

2.4.5 Break Prediction 

Prosodic boundaries and break indices are predicted by analyzing the syntactic 
structure of the text to be synthesized. Basically, the break indices can be 
predicted according to the punctuation. For a long PPh, we can insert an extra B3 
to segment the PPh into two PPh units. PW is a fundamental prosodic unit, while 
the lexical word (LW) is a basic syntactic unit in the syntactic structure. 
Therefore, PW prediction is the first step towards building a prosody model from 
a piece of text. According to Chen14, only 67.5% of PWs and LWs are coincident 
in prosodic structure tagged corpora. The accuracy of predicting PWs by 
grouping LWs using statistical approaches is approximately 90%. 

2.4.6 System Flowchart 

Given a piece of text, the prosodic boundaries and break indices are predicted 
based on an analysis of the syntactic structure. The PG hierarchical structure and 
the pronunciation (the syllable sequence associated with the text) are also 
generated. Then, the duration and intensity of all syllables are assigned by the 
duration model and the intensity model, respectively, while the F0 contours of all 
phrases are generated by the intonation model. The output of text processing is 
stored in a predefined XML document. Finally, the TD-PSOLA method is used 
to perform prosody modification, and the TTS system outputs the concatenated 
waveform. 

2.5 Discussion and Conclusions 

The TTS system introduced in this section attempts to synthesize fluent speech in 
long paragraphs based on a specially-designed moderate syllable-token database. 
It is believed that an integrated prosodic model that organizes phrase groups into 
related prosodic units to form speech paragraphs would significantly improve the 
naturalness of the output of an unlimited TTS system. How mono-syllables can 
be collected to provide further prosodic information has been shown. 
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3.  A Tone Modeling Approach Using Unlabeled Speech Corpus  

Traditionally, prosody modeling is conducted using well-annotated speech 
corpora with all prosodic phrase boundaries and break indices being properly 
labeled in advance. Usually, this is done manually. But it is a labor-intensive 
work. Besides, the inconsistency of human labeling is also a problem. So, most 
corpora used in prosody modeling are not large. Some alternative prosody 
modeling studies for syllable duration and pitch contour of Mandarin speech 
using unlabeled speech corpora were performed recently.19-20 In this section, a 
statistical tone modeling method for Mandarin pitch contour using an unlabeled 
speech corpus is discussed. The method is an extension of that proposed by 
Chiang.21 The basic idea is to use a statistical model to consider some major 
affecting factors that control the variation of the syllable pitch contour. By this 
way, the relationship between the observed values of pitch contour patterns in the 
speech corpus and its major affecting factors can therefore be built automatically. 

3.1 Review of previous works 

Two prosody modeling studies for Mandarin speech using unlabeled speech 
corpora were proposed recently.19-21 One is for syllable duration19 and another is 
for syllable pitch contour20. We briefly review them in the following subsections. 

3.1.1 A Statistical Syllable Duration Model19 

The syllable duration model is designed based on the idea of taking each 
affecting factor as a multiplicative companding factor (CF) to control the 
compression and stretch of syllable duration. Five major affecting factors 
including tone, base-syllable, speaker-level speaking rate, utterance-level 
speaking rate, and prosodic state are considered. Prosodic state is conceptually 
regarded as the state in a prosodic phrase. The model is expressed by 

 ,
n n n n nn n t y j l sZ X γ γ γ γ γ=  (14) 

where nZ  and nX  are the observed and normalized durations of the n-th syllable; 

pγ  is the CF of the affecting factor p; , , ,  and nt ny nj nl ns  represent 
respectively the lexical tone, prosodic state, base-syllable, utterance, and speaker 
of the n-th syllable; and nX  is modeled as a normal distribution with mean μ  
and variance v. The model further considers the three Tone 3 patterns15,16 of 
falling-rising, middle-rising and low-falling to increase the number of tones to 7. 
The model is trained by an EM algorithm with prosodic state being treated as 
hidden. 
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The model is validated by using a speech corpus containing paragraphic 
utterances of 5 speakers. The following conclusions were obtained: 

 The variance of syllable duration reduces significantly as the influences of 
these five affecting factors are eliminated. 

 The influences of 7 tones and 411 base-syllables can be directly obtained 
from their CFs. 

 The prosodic state is linguistically meaningful. 
 The labeling of the three Tone 3 patterns looks good. 
 The CFs of utterance show that long texts are always pronounced fast while 

short texts are pronounced in arbitrary speed. 
 Both initial and final durations are propositional to the syllable duration 

except when the syllable is largely shortened or lengthened. In the two 
extreme cases, final is usually compressed or stretched more seriously. 

3.1.2 A Statistical Syllable Pitch Contour Model20

The syllable pitch contour model is built based on the same principle of syllable 
duration modeling. The mean and shape of syllable pitch contour are separately 
modeled by considering different set of affecting factors. For pitch mean, 
affecting factors considered include the tones of the previous, current, and 
following syllables; the initial and final classes of the current syllable; the 
prosodic state of the current syllable; and the speaker’s level shift and dynamic 
range scaling factors. For pitch shape, affecting factors considered include lexical 
tone combinations15,16, the initial and final classes of the current syllable, the 
prosodic state for the effects of high-level linguistic features, and the pitch level 
shifting effect of speakers. 

The same 5-speaker speech corpus is used to evaluate the pitch mean and 
shape models. The following conclusions were obtained: 

 The variances of pitch mean and shape parameters reduce significantly as 
the influences of their respective affecting factors are eliminated. 

 Many tone sandhi rules, including the famous 3-3 tone sandhi rule, can be 
observed from the CFs of tone combinations. 

 The prosodic state is linguistically meaningful. 
 A change of the prosodic state index, from large to small, indicates a 

possible phrase boundary. An effective rule-based method to detect minor 
and major prosodic phrase boundaries is therefore proposed. 

3.2  F0 Modeling 

The proposed syllable pitch contour model considers the following three major 
affecting factors: lexical tone, prosodic state and inter-syllable coarticulation. 
Here, prosodic state is used to account for the influences of all high-level 



Sin-Horng Chen, Chiu-Yu Tseng and Hsin-min Wang 12 
 

,

linguistic features and can be conceptually regarded as the state of the current 
syllable staying in a prosodic phrase.  

3.2.1  The Proposed Syllable Pitch Contour Model 

The model is formulated based on the assumption that all affecting factors are 
combined additively and can be expressed by 

, , ,, 1 , 1, , ,,k n k n k n k nk n k n
f b

k n k n t p c tpc tp− −
= + + + +x y χ χ χ χ  (15) 

where  and  are vectors of four orthogonal expansion coefficients 
representing, respectively, the observed and normalized pitch contours of the n-th 
syllable in utterance k;  is the affecting pattern of the current tone 

; 

,k nx ,k ny

,k ntχ

, {1,2,3,4,5}k nt ∈
,k npχ  is the affecting pattern of prosodic state 

, {0,1,2, , }k np P∈ L ;  is the coarticulation state of the 
inter-syllable location between syllables n and n+1 with 

 representing the states of utterance beginning and 

ending, respectively;  is the tone pair ; 

 is the forward affecting pattern of the tone pair  with 

coarticulation state ;  is the backward affecting pattern of the 

tone pair  with coarticulation state ; We note here that 

 and  . Notice that we directly 

assign the prosodic state 

, {0,1,2, , , 1}k nc C∈ L C +

C

)
, 1 ,0  and  1

kk k Nc c= =− +

{(1,1),(1,2), ,(5,5)},tpk n∈ L , , 1( ,k n k nt t +

, 1 , 1,k n k n
f
c tp− −

χ , 1k ntp −

, 1k nc − , ,,k n k n
b
c tpχ

,k ntp ,k nc

, 1 , 1 ,1, 0,k k n k
f f
c tp t=

− −
χ χ

, , ,, 1,
k k kk N k N k N

b b
c tp C t= +χ χ

, 0k np =  for those syllables whose F0 can not be 
detected. Fig. 4 displays the relationship of syllable pitch contours and these 
affecting factors. 
 

 
Fig. 4. The relationship of syllable pitch contours and affecting factors used. 



Tone Modeling for Speech Synthesis 13 

The normalized pitch shape  is modeled as a Gaussian distribution 
, or equivalently  is modeled by  

,k ny

,( ; ,k nN y μ R )

)

)

)

,k nx

, , , 1 , 1 , ,, , ,( ; ,k n k n k n k n k n k n
f bt pk n c tp c tpN

− −
+ + + +x μ χ χ χ χ R     (16) 

Here, both the prosodic state, representing the prosodic feature variation in a 
prosodic phrase, and the coarticulation state, representing the degree of coupling 
between two consecutive syllables, are treated as hidden. To help determining 
them, two additional probabilistic models are introduced. One is the 
coarticulation state model  which describes the relationship of the 

coarticulation state  and a set of acoustic/linguistic features  extracted 
from the vicinity of the inter-syllable location following syllable n. Another is the 

prosodic state model  which describes the relationship of the 

prosodic state 

, ,( |k n k nP ci

,k nc ,k ni

, ,( |k n k nP s p

,k np  and a set of syntactic features ,k ns  extracted from the 
syntactic tree of the sentence containing syllable n. 

In this work, the model of  involves four features and is expressed by ,k nc

, , , , , , , , , ,( | ) ( | ) ( | ) ( | ) ( |k n k n k n k n k n k n k n k n k n k nP c P PD c P PM c P IW c P IT c=i )

( , , ,k n k n k n k n k nPD PM IW IT=i ,k nPD

  (17) 

where ;  and  are, respectively, the 

pause duration and punctuation mark following syllable n;  indicates 
whether the inter-syllable location between syllables n and n+1 is an inter-word 
or intra-word; and 

, , , , , ) ,k nPM

,k nIW

,k nIT  is the general type of consonant of the n+1 syllable. 

The prosodic state model describes the relationship of ,k np  and some features 
representing the role of the current syllable n in the syntactic tree17. In this study, 
31 syntactic features determined based on the contextual information of the 
syllable are chosen. They are categorized according to the position of the current 
syllable in a word: beginning-of-word (BW), within-word (WW), ending-of-
word (EW), and single-syllable-word (SW). They are listed in Table 1. The 
model is then expressed by 

 , , , ,( | ) ( |k n k n k n i k nP p P sr p )= =s s  (18) 

where  is a syntactic role of the current syllable. isr
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Table 1: The syntactic roles used in the modeling of  
,k n

p

position in a word ‧ within-word (WW) 
‧ beginning-of-word (BW) 
‧ end-of-word (EW)  
‧ single-syllable-word (SW) 

type of the preceding phrase 
at the same level in the tree

‧ single-syllable- word (PSW) 
‧ 2 or 3-syllable word (PW23) 
‧ 4 or more-syllable word (PW4) 
‧ phrase boundary without PM (PPB) 
‧ phrase boundary with PM (PPBPM) 

type of the following phrase 
at the same level in the tree

‧ single-syllable- word (FSW) 
‧ 2 or 3-syllable word (FW23) 
‧ 4 or more-syllable word (FW4) 
‧ phrase boundary without PM (FPB) 
‧ phrase boundary with PM (FPBPM) 

(PSW| PW23| PW4| PPB| PPBPM)_BW 
5 combinations 
EW_(FSW| FW23| FW4| FPB| FPBPM) 
5 combinations 
(PSW| PW23| PW4| PPB| PPBPM)_SW 
_(FSW| FW23| FW4| FPB| FPBPM) 
25 combinations 

isr  

WW  
1 combination 

 

3.2.2  Experimental Results 

Performance of the proposed pitch modeling method was evaluated using a 
Mandarin speech database. The database contained the read speech of a single 
female professional announcer. Its texts were all short paragraphs composed of 
several sentences selected from the Sinica Tree-Bank Corpus17. All sentences of 
the Tree-Bank corpus were manually parsed to extract their syntactic tree 
structures. The database consisted of 380 utterances with 52,192 syllables.  

In the evaluation, we set the numbers of prosodic states and coarticulation 
states to be 16 and 8, respectively. After well training, the covariance matrices of 
the original and normalized syllable pitch feature vectors were 

 

8
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8 40 71 19

 7.93 10

− −
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The determinant of the covariance matrix of the normalized pitch feature vector 
was reduced significantly as compared with that of the observed vector. 

Fig. 5 shows the affecting patterns and their F0 mean values of 16 prosodic 
states. Table 2 displays the state transition probabilities. Fig. 6 displays three 
typical examples. As shown in Fig. 5, States 1, 2, 3 and 4 have low and flat 
patterns and hence tend to be located at the trail of a prosodic phrase (because of 
the declination effect of F0). High probabilities of  and 

 for p=2, 3 and 4, observed from the prosodic state model, 
also confirm that they appear at the ending parts of syntactic phrase and sentence 
very often. Moreover, high transition probabilities of 2-2, 2-3, 3-2, 3-3, 4-3 and 
4-4 observed from the state transition table (Table 2) show that the low and flat 
trail pattern of prosodic phrase (see Fig.6(c)) is common to appear. On the other 
hand, States 15, 14 and 12 have high and rising-falling patterns and hence tend to 
be located at the beginning of a prosodic phrase (to show the reset phenomenon). 
This finding can be further confirmed by the high probabilities of 

 and  for p=15, 14 and 12 which show that 
they appear at the beginning parts of syntactic phrase and sentence very often. 
Moreover, high transition probabilities of 15-10, 15-9, 15-13, 14-10, 14-9, 14-7, 
12-9 and 12-7 show that the rising-falling reset pattern (see Figs.6(a) and (b)) of 
prosodic phrase is common to appear. From closely examining some frequently 
occurred prosodic state pairs or triplets, we find that most of them form prosodic 
words. 

( _ |P EW FPB p)
)

) | )

( _ |P EW FPBPM p

( _ |P PPB BW p ( _P PPBPM BW p

 
Fig.5: The affecting patterns and their F0 mean values of 16 prosodic states. 
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Table 2: Prosodic state transition probability  
1

( | )
n n

P p p
−

Pn-1\Pn
Bigram 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0.02 0.68 0.02 0.02 0.05 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

1 0.08 0.12 0.17 0.10 0.05 0.10 0.02 0.12 0.02 0.10 0.01 0.04 0.01 0.02 0.00 0.01 0.01

2 0.00 0.08 0.24 0.14 0.09 0.12 0.02 0.10 0.02 0.08 0.01 0.05 0.01 0.02 0.01 0.01 0.00

3 0.00 0.04 0.22 0.09 0.22 0.09 0.10 0.06 0.04 0.03 0.02 0.02 0.02 0.02 0.01 0.00 0.00

4 0.00 0.02 0.09 0.18 0.04 0.20 0.02 0.17 0.01 0.11 0.02 0.06 0.02 0.02 0.01 0.01 0.00

5 0.00 0.02 0.11 0.07 0.23 0.09 0.19 0.06 0.08 0.04 0.04 0.03 0.02 0.01 0.01 0.01 0.00

6 0.00 0.01 0.06 0.17 0.03 0.21 0.02 0.19 0.02 0.11 0.02 0.06 0.03 0.03 0.02 0.02 0.01

7 0.00 0.01 0.04 0.04 0.14 0.07 0.21 0.05 0.17 0.05 0.07 0.04 0.04 0.03 0.02 0.01 0.00

8 0.00 0.01 0.04 0.11 0.06 0.19 0.07 0.16 0.06 0.10 0.03 0.07 0.03 0.03 0.02 0.02 0.01

9 0.00 0.01 0.02 0.02 0.06 0.05 0.15 0.06 0.18 0.07 0.12 0.06 0.07 0.05 0.05 0.04 0.01

10 0.00 0.01 0.04 0.07 0.09 0.14 0.12 0.12 0.10 0.09 0.05 0.05 0.04 0.04 0.02 0.02 0.01

11 0.00 0.00 0.02 0.02 0.04 0.04 0.09 0.05 0.15 0.05 0.16 0.06 0.11 0.06 0.07 0.07 0.02

12 0.00 0.01 0.03 0.06 0.08 0.11 0.14 0.09 0.14 0.08 0.09 0.05 0.04 0.04 0.02 0.03 0.01

13 0.00 0.00 0.01 0.01 0.03 0.03 0.08 0.02 0.17 0.03 0.19 0.04 0.15 0.04 0.10 0.06 0.03

14 0.00 0.00 0.02 0.03 0.05 0.08 0.13 0.09 0.17 0.07 0.13 0.05 0.07 0.03 0.03 0.03 0.01

15 0.00 0.00 0.01 0.01 0.01 0.03 0.06 0.04 0.13 0.04 0.21 0.05 0.16 0.05 0.12 0.06 0.03

16 0.00 0.00 0.02 0.02 0.01 0.02 0.03 0.03 0.08 0.03 0.19 0.06 0.19 0.02 0.14 0.11 0.04  
 

 
(a) 

 
(b) 

 
(c) 

Fig.6: Typical examples: (a) State pair 15-9 at the beginning of sentence, (b) 14-9 at 
the beginning of phrase, and (c) 4-3-3 at the end of sentence. 

Fig. 7 shows the probabilities of prosodic state given syllables before and 
after comma and period, i.e., ( | _ )P p PPBPM BW  and . It can be 
found from the figure that the beginning syllables of sentence stay at States 8, 11, 

( | _ )P p EW FPBPM
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12, 14 and 15 with high probabilities while the beginning syllables were probably 
associated with States 2, 3, 4 and 5. 

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16p

P(p|PPBPM_BW)

P(p|EW_FPBPM)

 
 Fig. 7: The distributions of prosodic states at the beginning and ending locations of sentence. 

Fig. 8 displays the autocorrelations of the means of the original syllable pitch 
contour and the prosodic-state affecting patterns. With the excluding of the local 
affections of tone and inter-syllable coarticulation, the prosodic-state affecting 
patterns have higher autocorrelation. 

 
Fig. 8. The autocorrelations of the means of the original syllable pitch and the 
prosodic-state affecting patterns 

Table 3 shows some statistics of eight coarticulation states. It can be found 
from the table that the first two states have higher hit rates to PM (comma and 
period) and have longer pause. So they correspond to major and minor breaks 
with no- or loosely-coupling coarticulation. On the other hand, the last four states 
have higher probabilities of intra-word and shorter pause durations. So they 
correspond to states of tightly-coupling coarticulation. 

Table 3: Some statistics of eight coarticulation states. 
Cn 1 2 3 4 5 6 7 8 

P(inter| Cn) 0.85 0.72 0.70 0.67 0.48 0.38 0.32 0.35
P(intra| Cn) 0.15 0.28 0.31 0.33 0.52 0.62 0.68 0.65

P(comma| Cn) 0.32 0.07 0.04 0.04 0.02 0.03 0.02 0.02
P(period| Cn) 0.09 0.02 0.01 0.02 0.01 0.01 0.00 0.01

P(non-PM | Cn) 0.58 0.90 0.95 0.94 0.97 0.97 0.98 0.98
Average Pause  
duration (ms) 225 76 48 48 28 23 23 23

 
Fig. 9 displays a typical example of the reconstructed 3-3 tone pattern. It can 

be seen from the figure that the second Tone 3, which had been changed to a 
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sandhi Tone 2, was well-reconstructed via the use of coarticulation affecting 
pattern. 

 
Fig. 9. A typical examples of the reconstructed 3-3 tone pattern: (a) without and (b) 
with using coarticulation affecting patterns. 

Fig. 10 displays a typical example of the reconstructed pitch contour and 
prosodic-state patterns of a sentence. It can be found from the figure that the 
reconstructed pitch contour matches well with its original counterpart. We also 
found that the trajectory of the prosodic-state patterns was smoother and looked 
more resemble to a sequence of prosodic-word/phrase patterns. Moreover, a 
typical prosodic state pair of 15-13 (3-3) was appear at the beginning (end) of the 
sentence. 

 
(a) 

 
(b) 

Fig. 10: A typical example: (a) the syntactic tree of a sentence and (b) the original (⎯) 
and reconstructed (⋅⋅⋅) pitch contours, and mean+prosodic-state patterns (xxx). 
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3.2.3  Discussions and Conclusions 

A statistical syntax-prosody model of syllable pitch contour for Mandarin speech 
was discussed in this section. Experimental results showed that the model 
performed well on separating the influences of several major affecting factors. 
Many prosodic cues, which are linguistically meaningful, can be found by the 
model. Not only the individual prosodic state and coarticulation state but also the 
state sequences are useful in constructing/analyzing the hierarchical prosody 
structure of Mandarin speech. It seems better to perform prosodic phrase analysis 
basing on the prosodic state sequence because the interference from local 
affecting factors, such as base-syllable and tone, can be eliminated.  

With the capability of building explicit relationships of syntactic information 
and observed syllable pitch contour parameters, the model can be applied to 
assist MTTS in performing automatic prosodic labeling to obtain large well-
annotated training corpora, in predicting prosodic phrase boundary or break, and 
in generating prosodic information for speech synthesis. This is worth further 
studying in the future. 

4.  Conclusions 

It is believed that a sophisticated tone model would be effective on providing 
proper prosodic information to significantly improve the naturalness of the 
output of unlimited MTTS systems. In this chapter, two modern tone modeling 
methods for MTTS have been discussed. They constructed computational models 
to analyze the relationship between hierarchical linguistic structure and prosody 
structure in a quantitative way. Experimental results confirmed their 
effectiveness. 
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