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A model for fundamental frequency (F0, or commonly pitch) employing a functional principal

component (FPC) analysis framework is presented. The model is applied to Mandarin Chinese; this

Sino-Tibetan language is rich in pitch-related information as the relative pitch curve is specified for

most syllables in the lexicon. The approach yields a quantification of the influence carried by each

identified component in relation to original tonal content, without formulating any assumptions on

the shape of the tonal components. The original five speaker corpus is preprocessed using a locally

weighted least squares smoother to produce F0 curves. These smoothed curves are then utilized as

input for the computation of FPC scores and their corresponding eigenfunctions. These scores are

analyzed in a series of penalized mixed effect models, through which meaningful categorical proto-

types are built. The prototypes appear to confirm known tonal characteristics of the language, as

well as suggest the presence of a sinusoid tonal component that is previously undocumented.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4714345]
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I. INTRODUCTION

A. Theoretical background

Speech sounds consist of complex periodic waves char-

acterized by their frequency and amplitude. Phonetic sound

properties of research interest include the pulse, intensity,

sound wave components, spectrum, and/or duration of the

examined sound segment, as well as fundamental frequency

(F0), the focus of this paper. F0 as a speech phenomenon is

the major component of what a human listener identifies as

pitch and relates to how fast the vocal folds of the speaker

vibrate during speech.1,2

While in many languages pitch differences are mostly

detected in matters of intonation or semantic alterations

(such as expression of sarcasm), in tonal languages, such as

Taiwanese Mandarin, pitch (and the closely related F0) plays

a crucial role in the actual lexical entry of the word. As such,

má (%) said with a mid rising tone means hemp, while

articulated with a high falling tone, mà (&), means to scold.
In the past, linguistic studies treated F0 as a single point by

utilizing target values3,4 or obtained estimates of the F0 con-

tour by treating it as a bounded rigid curve through processes

of averaging.5 Such approaches, by necessity, impose simpli-

fying assumptions which make interpretation difficult when

considering a complete corpus of data from a more natural

language experiment.

In this paper, a different approach is adopted. We pro-

pose a model where the F0 curve is characterized as the real-

ization of a stochastic Gaussian process.6 A Gaussian

process is essentially a generalization of a multivariate Gaus-

sian random variable to an infinite index set.7 As a conse-

quence, our methodology treats the fundamental frequency

of each rhyme as a bounded continuous curve, rather than a

time-indexed vector of readings.

Functional data analysis offers tools for analyzing data

that consist of functions—often but not always, smooth

curves.8 In the current study, a functional principal compo-

nent analysis (FPCA) is first performed on the data set’s F0

measurements to extract the principal curves, those curves

which explain the most variation in the data. Similar

approaches might utilize Legendre polynomials,9 quadratic

splines,10 or Fourier analysis to derive lower and higher

ranking basis functions that would correspond to slower and

faster varying components of the utterance. However, these

functions are fixed in advance rather than derived directly

from the data and are not guaranteed to be optimal in terms

of the minimal number required to explain a certain percent-

age of the variation in the data as in the case of principal

component functions.11

Building on the FPCA findings, the functional principal

component (FPC) scores are used as the dependent values in

a series of linear mixed effect (LME) models, allowing the

scores to act as proxy data for the complete curves. The
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scores essentially quantify the weight each FPC carries in

the final F0 curve formation, and will be described in further

detail in Sec. II. LME models allow the inclusion of both

fixed and random effects to achieve a flexible modeling of

the data. In the current case, the difference between individ-

ual speakers due to genetic, environmental12 or even chance

factors13 are modeled as a series of random additive effects

acting on the F0 contours.14,15 In order to compute the

FPC’s, the sample mean is subtracted from the data, and the

covariance of the data then calculated, in a similar way to

standard multivariate principal component analysis. Another

possible approach would be to subtract the speaker specific

mean from each syllable, prior to further analysis. We chose

not to follow this direction as determining the effect of

speaker on each of the components is of interest. However,

as might be expected, the two approaches yield very similar

results (see supplementary material,16 Sec. III).

The methodology presented here addresses the issue that,

while it has been widely accepted and documented that F0

undergoes variations due to phonetic processes in speech pro-

duction that are attributed to fixed effects (e.g., the sex of the

speaker), unmeasurable variables such as the length of the

speaker’s vocal folds or the state of their health, also affect

the final F0 utterance. This measurability problem is coun-

tered by considering such covariates as random effects. This

theoretical perspective is not ad hoc; it corresponds directly

with the linguistic, para-linguistic and non-linguistic parame-

ters presented in the work of Fujisaki.17,18 The Fujisaki model

implementations have been extended by Mixdorff19 to

account for micro-prosodic effects by taking advantage of the

MOMEL algorithm.10 Other approaches utilize the automatic

intonation modeling approach as offered by the INTSINT

(Refs. 20, 21) and/or the TILT algorithmic implementations.22

Furthermore the qTA model23 also builds on Fujisaki’s

assumption, proposing a description of the physiological

mechanisms behind F0 production, a goal somewhat different

from the one in this paper. In the present framework and anal-

ogous to the Fujisaki rationale, F0 is the dependent variable of

interest with standard fixed effects such as the vowel in the

rhyme corresponding to linguistic effects, sentence variations

and break points within the utterance corresponding to para-

linguistic effects, and speaker variations corresponding to

non-linguistic effects.

As Evans et al. have already presented24 and Aston

et al. have further extended,15 the explanatory power that

can be yielded from the application of LME models for F0 is

insightful in cases of tonal languages. In the current study,

the F0 track of each rhyme in the utterance is used; as a

result, while the two previously mentioned works focused on

one position in a frame sentence, in this project a large num-

ber of read texts of varying lengths are investigated, adding

new dimensions of complexity and further enhancing the

generality of the approach by analyzing complete corpus

data. In addition, while the previous studies utilized two pho-

nologically level tones, Mandarin has both level and contour

tones as well as toneless syllables and thus poses a signifi-

cantly more complex analytical challenge.

As a starting point, a smoothing and interpolation proce-

dure is utilized to change the measurement from real-time

into that of normalized syllable time, building partially on

the assumption of syllable-synchronization.23 Next, regres-

sion models are introduced to help identify significant cova-

riates of speech production. Afterwards, a penalized system

of model selection is put forward to obtain the final models.

Given the amount of data present in the study, over-fitting is

a concern, and therefore a penalty on the number of regres-

sors in the model is imposed through an AIC approach (as

outlined by Faraway25) and jackknifing is also implemented

to further enhance and test the robustness of the findings.

This use of FPCA and mixed effects modeling offers a gen-

eralized semi-parametric approach to the linguistic modeling

of Mandarin Chinese F0.

The application of FDA (functional data analysis) in

relation to linguistics is not without precedence. The early

work of Ramsay et al.26 used FDA to model the coordinates

of lip motion in order to infer basic principles of lip coordi-

nation. Since then a number of speech production related

questions associated with articulatory issues,27–29 as well as

with issues of physiological interests,30–32 have been

addressed with FDA. The current work differs from the

above mentioned projects by employing an entire corpus as

raw data. Rather than using a small linguistic sample by a

single speaker,18 employing monosyllabic utterances and a

small number of sentences33 and/or frames within the utter-

ances5,15,27,30 to minimize possible confounds at the data

collection level, a large corpus is analyzed and the con-

founds explicitly modeled. In contrast to existing intonation

synthesis algorithms, the current methodology’s primary

goal is to offer insights into how linguistic and non-

linguistic factors combine in the estimation of F0 and

presents an auxiliary approach for existing speech synthesis

algorithms in terms of modeling the acoustic shapes of

tones.

B. Dataset presentation

The Sinica Continuous Speech Prosody Corpora 1

(COSPRO-1) is a large-scale comprehensive data-set con-

sisting of recordings of Taiwanese Mandarin read speech.34

Five participants each uttered a total of 599 predetermined

sentences. After pre-processing and annotation, their utteran-

ces, having a median length of 20 syllables, resulted in a

total of 54 707 frequency curves. Each F0 curve corresponds

to the rhyme portion of one syllable. The three female and

two male participants were native Taiwanese Mandarin

speakers. The recordings themselves were conducted by the

Institute of Linguistics, Academia Sinica in 1994. Using the

in-house developed speech processing software package

COSPRO TOOLKIT,34,35 the fundamental frequency (F0) of each

rhyme utterance was extracted at 10 ms intervals, a duration

under which the speech waveform can be regarded as a sta-

tionary signal.36 Associated with the recordings were charac-

terizations of tone, rhyme, initial consonant as well as

speech break or pause; the presented corpus is a real lan-

guage corpus, designed to include all tonal combinations but

still have semantic meaning. The syllables are labeled with

the four lexically specified tones as well as encoding that

some syllables are phonologically toneless (tone 5), and
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additional contextual information is also associated with

each curve (see Table IV for a list of covariates included).

This data set has been previously analyzed using a Fujisaki

approach.37

II. STATISTICAL METHODOLOGY

A. Functional data analysis

Ferraty and Vieu provide the following definition: “A

random variable x is called a functional variable if it takes

values in an infinite dimensional space (or functional

space).”38 Here we interpret the F0 trajectory as observed

functional data. Based on the Ferraty and Vieu definition and

given that the examined dataset is indeed in curve-form, the

current study adopts the notion put forward by Chiou et al.,
that “each observed curve is a (independent) realization of a

stochastic process reflecting the random nature of the indi-

vidual curves.”39 As a logical result, given a stochastic pro-

cess Y(t), t�, [0,1] the sample curves can be thought of as

having a mean E[Y(t)]¼ l(t) and a covariance cov[Y(s),

Y(t)]¼C(s, t). Taking advantage of the symmetric nature of

C (C(s, t)¼C(t, s)) the following spectral decomposition fol-

lows by Mercer’s theorem40 for C(s, t):

C s; tð Þ ¼
X1
�¼1

k�/� sð Þ/� tð Þ; (1)

where k1� k2� ��� � 0 are ordered eigenvalues of the opera-

tor C and /�’s are the corresponding eigenfunctions.

Going back and reviewing the notion of PCA, it is worth

noting that PCA is not only a convenient transformation for

dimensionality reduction; the principal components (PCs)

themselves serve as characterizations of the sample’s trajec-

tories around an overall mean trend function,41 in other

words each PC gives a representation of the F0 contour com-

ponents for our data. As Castro et al. briefly summarized in

their seminal work on continuous sample curves,42 given a

vector process Y¼ (y1, y2, …, yp)T, where y1, y2, …, yp are

scalar vectors, an expression of the form

Z ¼ M þ
Xm

�¼1

a�Z� tð Þ (2)

is called a m-dimensional model of Y, where M denotes the

mean vector of the process, Z1, Z2, …, Zm are fixed unit length

p vectors and a1, a2, …, ak are scalar variates dependent on Y.

Proposing now that a process Y(t) is observed at p distinctive

times t1, t2, …, tp it yields the analogous random vectors y(t),
describing the stochastic process Y¼ (y(t1), y(t2), …, y(tp))T,

fitting perfectly with the theoretical notions of longitudinal

data being a variation of repeated measurements. Therefore,

coming back to the original notion of a stochastic process

Y (t), the m-dimensional linear model for such process is

Yj tð Þ ¼ l tð Þ þ
Xm

�¼1

a�;j/� tð Þ; (3)

where a� are once more the uncorrelated random variables

with zero mean and refer to the �th principal component

score of the jth subject and /� are linear independent basis-

functions, of the random trajectories Yj. This expansion (3) is

referred to as the Karhunen–Loève or FPC expansion of the

stochastic process Y.43

It must be noted here, that as Rice and Silverman

emphasized, the mean curve and the first few eigenfunctions

are smooth and the eigenvalues k� tend to zero rapidly so

that the variability is predominantly of large scale.44 In phys-

ical terms, smoothness of data is critical so that the discrete

sample data can be considered functional.11 A number of

smoothing techniques have been proposed over the years

concerning FPCA; linear smoothing, basis function methods

such as wavelet or regression splines bases, or smoothing by

local weighting using local polynomial smoothing or kernel

smoothing, being some of the most frequently encountered.

Kernel smoothing, considered to be the optimal choice in the

case of local weighting,38 is the one applied here due to its

simplicity and computational ease, yielding smooth sample

F0 curves.

Utilizing the methodology proposed by Chiou et al.39 a

locally weighted least squares smoother, denoted by SL, is

implemented, so local lines are fitted to the data. A point t is

used as the center of a smoothing window or interval [t� b,
tþ b] where b is the fixed parameter commonly known as

bandwidth. The formal definition of the smoother itself is

SL t; b; ti; y tið Þð Þi¼1;…;s

n o
¼ argmin

a0

min
a1

Xs

i¼1

K
t� ti

b

� �
y tið Þ � a0 þ a1 t� tið Þf g½ �2

 !( )
; (4)

where K is the kernel function selected, t is the argument of

the smoother SL, b is the smoothing parameter (how big the

window of the smoother will be in relation to actual available

data-points), and (ti, y(ti))i¼1,…,s is the actual data scatter-plot

consisting of s points. Using cross-validation the optimal band-

width b was found to be 3% of the total rhyme duration signi-

fying the fact that even the initial sample was quite smooth. It

must also be mentioned that for the data to be suitable for

FPCA, besides the smoothing, time normalization is of impor-

tance. As the main focus of the present work is on the phonetic

F0 contour shapes, the results it yields are implicitly time nor-

malized on a [0, 1] interval. Therefore all the data-curves were

not only smoothed but concurrently interpolated in a [0, 1]

interval in order to be directly comparable with each other,

resulting in F0 curves on a rhyme time scale rather than in real

time. The reader will note that interpolation itself does impose
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a certain degree of smoothing, as well an ad hoc choice of the

number of points over which the interpolation takes place. The

actual readings in our study, after disregarding missing values,

had on average (15.38 �) 16 points per syllable, and based on

this estimate, the basis of 16 points is chosen. The analysis

was also conducted using 12- and 20-point interpolation so

that the impact of the smoothing could be more easily identi-

fied but this produced negligible differences. Furthermore, to

ensure the beginning and ends of each syllable are not sub-

jected to substantial smoothing errors due to limited data, the

beginning and the end point of the curve are not smoothed.

As a final remark on the smoother implementation, the

function K, denoting a non-negative kernel function, was

chosen to be a Gaussian basis function K xð Þ ¼ e�x2=2, being

the most standard weight function and also ensuring that its

product is never negative.

Having established the smoothness of the data, the next

step in the actual implementation of the K-dimensional linear

model of Eq. (2) is the estimation of the mean function.

Given that we have an equispaced design, the overall mean

function is estimated as

l̂ tið Þ ¼
1

n

Xn

i¼1

yj tið Þ; i ¼ 1;…; s; (5)

where n is the number of sample F0 curves available and s is

the number of points in each curve (in the current data,

54 707 and 16, respectively).

The final step to calculate the FPCA scores is actually

the most straightforward. Following the same methodology

as Aston et al.,15 the eigenfunctions are calculated by the

spectral analysis of the estimated covariance matrix

Ĉ tk; tlð Þ ¼ 1

n

Xn

j¼1

yj tkð Þ � l̂ tkð Þ
� �

yj tlð Þ � l̂ tlð Þ
� �

;

k; l 2 1;…; sf g:
(6)

As a result, we can estimate the eigenfunctions /�, which as

shown in Eq. (1), correspond to solutions of

Ĉ tk; tlð Þ ¼
Xm

�¼1

k�/̂� tkð Þ/̂� tlð Þ; (7)

where k1, k2, …, km are the ordered eigenvalues of the sys-

tem. Finally the FPCA Aj,� scores are estimated as

Âj;� ¼
Xs

j¼1

yj tið Þ � l̂ tið Þ
� �

/̂� tið ÞDi; (8)

where Di¼ ti� ti�1. These scores, Aj,�, are the ones finally

used for the estimation analysis by the LME. The choice and

number of FPC’s used is related to the amount of variation

that each of these components reflect. Given the large num-

ber of available sample utterances, a relatively high number

of FPC’s is required in order to account for phonetic effects

that might occur in just a relatively small number of sample

instances. Despite the need for statistical accuracy, it should

be mentioned that the actual information content found in

the FPC scores is of importance. Thus, only the FPC’s

reflecting variation that is audible are selected. In reality,

only pure tone F0 fluctuations above a 2 Hz threshold can

definitely be clearly perceived by the human auditory system

(just noticeable difference—JND);45 in the presence of

noise, JND is at a minimum of 10 Hz. As advocated by

Kochanski,46 in the case of human speech, the JND for pitch

motions seems to be rather larger. Black and Hunt4 show

that a 9.9 Hz RMS error is not detrimental to the model’s

success. This threshold will be used throughout the paper;

however our approach is flexible enough for other practi-

tioners to utilize it with different cut-off thresholds.

B. Linear mixed effects models

Having determined the eigenfunctions and correspond-

ing FPCs from the data, the next step involves the LME

model construction and selection. LME models are models

in which both random and fixed effects occur linearly in the

model’s implementation. As Pinheiro and Bates47 presented:

“(LME models) extend linear models by incorporating ran-

dom effects which can be regarded as additional error terms,

to account for correlation among observations within the

group.” More formally, and using the classical linear mixed

effect model notation proposed by West et al.,48 combined

with the distributions notion presented by Faraway,25 a

standard fixed effect model with normal errors:

A� ¼ X�b þ �� or A� � N X�b; r2I
� �

(9)

can be extended to account for random effects in the follow-

ing form:

A� ¼ X�bþ Z�cþ �� or A� jc � N X�bþ Z�c; r
2I

� �
;

(10)

where in the presented case A� is the vector of length n� 1

of FPC scores associated with the �th FPC, X� is the n� p
model matrix, the vector �� of length n encapsulates the ran-

dom variables representing the error in the relation, and b is

a vector of length p that contains the linear (fixed) regression

coefficients, where p is the number of those coefficients. The

extension of this model now to account for mixed effects is

such that Z� is a model matrix n� r (Ref. 49) associated

with a vector c of random effects. It needs to be stressed that

random effects are by definition random variables them-

selves.14 As such, the c vector will follow a multivariate

Gaussian distribution c�N(0, D), where D represents the

covariance matrix of the elements in vector c. In a similar

manner, the error residual vector � also follows a multivari-

ate Gaussian distribution where ��N(0, R) and R is the co-

variance matrix for residuals in vector �.
Having established that c�N(0, D) and ��N(0, r2I)

the variance of a is subsequently written as

Var A�ð Þ ¼ Var Z�cð Þ þ Var �ð Þ ¼ Z�DZT
� þ r2I (11)

resulting in the unconditional distribution:

4654 J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012 Hadjipantelis et al.: Characterizing F0 in Mandarin



A� � N X�b; r2I þ Z�DZT
�

� �
: (12)

Model construction requires the use of a definition for

the goodness of fit achieved by the model estimated. Exist-

ing literature suggests the log-likelihood function as a stand-

ard choice. Nevertheless, a number of issues have to be

highlighted. An important problem arising when estimating

the log-likelihood function of the data is that the unrestricted

maximum likelihood estimator (MLE) might involve a nega-

tive variance, which is clearly unacceptable. Moreover the

MLEs are biased. Given that the number of samples in the

random vector might be quite small, as in the case of speak-

ers, the difference between a biased and an unbiased MLE

can be significant. Therefore when estimating the final pa-

rameters, the restricted maximum likelihood (ReML) is

used. ReML tries in essence to find linear combinations of

the responses, k, such that kTX¼ 0 and thus to exclude any

fixed terms parameters from the likelihood function.

However, ML is used for the model selection procedure as

the theory for model comparisons is based on ML estima-

tion. As ReML will try to transform the fixed effect response

in the manner described above, this would lead to a series of

different transformations for each model setting, making

them incomparable. Therefore it is essential to use ML esti-

mators if likelihood ratio tests are to be implemented.

For each FPC’s scores, the LME modelling procedure

was initiated by a model containing the maximal number of

linguistically plausible covariates. By employing an Akaike

information criterion (AIC) selection of the models exam-

ined, models with both important covariates and also parsi-

mony were identified.50,51 AIC for each model is defined as

AIC ¼ 2 �loglik þ qð Þ; (13)

where q is the number of parameters in the model examined

and loglik the maximum value of the log-likelihood function

of the model. AIC chooses a model that is adequately

detailed to capture the variation exhibited in the data but

concurrently attaches a penalty as the number of included

covariates increases. This is achieved by the terms loglik and

q, respectively.

To assess significance and give confidence intervals for

the model’s estimates, highest posterior density intervals were

found14 using MCMC sampling for the chosen models. In

addition, in order to check the robustness of the results

obtained, jackknifing was performed by constructing partitions

of the data into five random sets and then examining 180 such

randomizations, comparing the models produced. In the case

of a discrepancy between jackknifing and AIC, the more parsi-

monious model was chosen. More details of the AIC scores

and jackknifing are given in the supplementary information.16

Overall, the complete procedure to obtain the F0 estimate,

once the components (in the example four chosen components

are used) and models are found, can be summarized by Fig. 1.

III. DATA ANALYSIS AND RESULTS

We must emphasize that while the statistical robustness

of the methods employed is crucial, the actual targets of this

project are the phonetic significance and interpretation of its

results. The analysis requires high-specificity as some tonal

combinations and other covariate interactions of interest are

relatively sparse within the data. Therefore, initially at least

99.99% of the total variation in the original data has to be

accounted for. This figure results from the need to ensure

effects that might only systematically alter a small number of

sample curves are not missed in the analysis. Thus, the first 12

FPC’s were selected as necessary to incorporate in the model-

ing procedure. This unusually large number of FPC’s was

also dictated by the fact that significant regression-related

effects might actually appear in a small percentage of the sam-

ple variation. These 12 FPCs account for the 99.992% of the

total variation in the sample (Table I). Nevertheless, in a worst

case scenario, even by accounting for such high variation, rel-

evant characteristics that may occur in five syllables or fewer

within the corpus could be filtered away (based on the residual

variation of the discounted FPC’s).

Moreover, given the large number of samples, by taking

the upper model percentile (99%) of the FPC scores and mul-

tiplying it by the maximum absolute value of each eigenfunc-

tion, we can effectively derive an upper limit of the actual

variation attributed to each component in Hz, the unit that was

originally used for measurement. This is of interest because

any actual variation found to be below the minimum threshold

assumed (9.9 Hz in this case) is likely to remain unnoticed.

This cut-off threshold in essence excludes all FPC’s with rank

equal to or higher than 5, which were previously deemed as of

possible importance (see Table II). Statistically, it should be

emphasized that our estimates of the maximum actual audi-

tory variation per FPC are quite conservative as they are based

on a 99% quantile. As shown in Table II, if a 95% quantile

were used, it would suggest that we actually exclude the com-

ponents that are below 4.2 Hz, a significantly narrower range.

The eigenfunctions of each principal component are

computed and used to compute the FPC scores relating to

each curve. As mentioned in the previous section, not only

the smoothness of the covariance function of this transfor-

mation is essential, but also the smoothness of the eigen-

functions themselves. A visual inspection of our results

confirms that the kernel smoothing undertaken was suc-

cessful, with the data being smooth enough for the notions

of FDA to be applicable (even though only a minimal

smoothing was performed). The covariance function

appears smooth throughout its values (see supplementary

material,16 Sec. II) as do the mean and FPC curves

(Fig. 2). It must be noted that the fifth and sixth FPC’s

seem somewhat less smooth in appearance, further signify-

ing that the transformation starts to reach an explanatory

threshold and these components start to exhibit the charac-

teristics of noise. It is also noticeable that the eigenfunc-

tions appear to exhibit a distinctive polynomial pattern,

with each successive FPC’s eigenfunction reflecting the

component rank in the eigenfunction’s curvature (Fig. 2).

This result concurs with the assumed contour shapes of

Grabe et al.9 where Legendre polynomials L0 to L3 were

utilized for the contour basis of F0 to examine intonation.

In principal, given our statistical findings and the well

attested shapes of Mandarin tones in the literature, the ba-

sic tone curve of the syllable can essentially be
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reconstructed by using FPC1, FPC2, and FPC3, as can be

seen from the actual shape of those components, with

FPC4 allowing contextual movement between tones.

While the kernel smoothing and interpolation was imple-

mented by a custom built Cþþ program written by the first

author, utilizing the GSL package,52 the calculation for the

eigenfunction decomposition and the production of the FPC

scores was conducted using standard built-in MATLAB proce-

dures.53 The rest of the analysis was carried out in the statisti-

cal environment R.54 Except for the obvious standard R

FIG. 1. The first four eigencomponents (top row) are used to construct the final syllable estimate of F0 (bottom row). The individual component magnitude

(third row) is calculated by using the weight estimates (wi) obtained as the sum of the relevant utterance covariates from the LME model and the component

specific random intercept (second row). Subsequently, these components added together produce the centralized syllable estimate (row 4). Finally, the addition

of the sample mean (row 5) produces the final syllable estimate of F0 (bottom row).
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methods used (qqplot(), lm(), etc.) the major body of the anal-

ysis was done using methods from the statistical package LME4

(Ref. 55) (for the LME model estimation and prediction) and

LanguageR (Ref. 56) (for the MCMC sampling required for the

construction of confidence intervals relating to the model’s

estimators). As mentioned earlier, we examined the robust-

ness of the selected models through jackknifing, and extensive

sub-sampling was implemented using 180 5-sub-sample parti-

tions of our original samples, yielding a total of 900 sub-

samples. (For a detailed discussion and relevant histograms

refer to the supplementary material,16 Sec. VII.)

The model selection procedure was initiated by select-

ing a large but still linguistically plausible model and then

de-constructing it using AIC; excluding covariates that were

viewed as statistically redundant or insignificant. The fol-

lowing equation presents the original basis equation:

FPCx ¼
n

tnprevious 	 tncurrent 	 tnnext

� 	
:

þ cnprevious 	 tncurrent 	 cnnext

� 	
þ B2ð Þ þ B2ð Þ2þ B2ð Þ3
h
þ B3ð Þ þ B3ð Þ2þ B3ð Þ3

þ B4ð Þ þ B4ð Þ2þ B4ð Þ3

þ B5ð Þ þ B5ð Þ2þ B5ð Þ3
i
	 Sexþ rhymet½ �

o
b

þ Sentence½ � þ Spkr ID½ �f gcþ �: (14)

The standard R notation is used here for simplicity

regarding the interaction effects; [K*L] represents a short-

hand notation for [KþLþK:L] where the colon specifies

the interaction of the covariates to its left and right.57 Table

IV offers a list of each covariate and its definition. It must be

pointed out that, from the set of fixed effects, all fixed cova-

riates, with the exception of break counts, are in factor form.

Break (or pause) counts represent the number of syllables

between successive breaks of a particular type and are ini-

tialized in the beginning of the sentence and are subse-

quently reset every time a corresponding or higher order

break occurs. They represent the perceived degree of disjunc-

tion between any two words, as defined in the ToBi annota-

tions.3 B2 break types correspond to smaller breaks occurring

usually at the end of words, while B5 types occur exclusively

at a full stop at the end of each utterance; essentially signify-

ing an utterance boundary pause. Breaks B3 and B4 represent

intermediate or intonational phrase stops, respectively. B1

breaks were not used as these are coincident with our data ob-

servation unit (i.e., each syllable). Table III offers a compre-

hensive list of what each break represents. Break annotation is

of great importance because physiologically a break has a

possible resetting effect on the vocal folds’ vibrations and

thus its duration and strength significantly affects the shape of

the F0 contour, not just within a rhyme but across phrases.

During data generation, each speaker read the text in his/her

natural manner, and these recordings were then hand anno-

tated with break information. Allowing the break indexes to

form interactions with the speaker’s sex, the model can asso-

ciate different rates of curvature declination among male and

female speakers. This effect found to be usually associated

with lower order breaks (faster variational components). Fur-

thermore, the ability to allow different curvature declinations

between speakers of different genders enables the modeling

of more complex down-drift patterns. This approach allows

an analogy to be drawn with the phrase component used in

the Fujisaki modeling approach.17 The different tones of each

syllable may be associated with the accent component as pro-

posed by Mixdorff. The linguistic data were transcribed using

ASCII symbols58 to encode the nine vowels [@, d, a, e, i, e, y,

o, u]. Combinations of these vowels, with and without final

[�n,�˛], add up to 37 rhymes, which are listed in the supple-

mentary material16 (Sec. V).

As shown in Table IV, 13 possible covariates (not count-

ing their interactions) were included in the model. Eleven of

them account for fixed effects and two for random effects. The

initial model incorporates three-way interactions and their em-

bedded two- and one-way interactions. Three-way interactions

have been known to be present in Taiwanese Mandarin and

therefore were deemed as significant effects to incorpo-

rate5,15,59 both in the form of previous_tone: current_tone:

next_tone interaction as well as a previous_consonant: cur-

rent_tone: next_consonant interaction. Consonant refers only

to the consonant’s voicing status, not the identity of the sound.

Four levels were present in the consonant covariate. It is well

attested that syllables with no initial consonant in Chinese can

have an epenthetic glottal stop before the rhyme, as in the sec-

ond syllable of [tˆi�au?aù] “proud” [e.g., as in Lin60 (pp.

113–115, 173–174)]. The glottal stop [?] is defined as a

TABLE I. Individual and cumulative variation percentage per FPC.

FPC No. Individual variation Cumulative variation

FPC1 88.23 88.23

FPC2 9.78 98.01

FPC3 1.42 99.43

FPC4 0.32 99.75

FPC5 0.11 99.86

FPC6 0.05 99.91

FPC7 0.03 99.94

FPC8 0.02 99.96

FPC9 0.01 99.97

FPC10 0.01 99.98

FPC11 0.01 99.99

FPC12 0.01 99.99

TABLE II. Actual auditory variation per FPC (in Hz) (human speech audi-

tory sensitivity threshold � 10 Hz).

FPC No. Hz (99%) Hz (95%)

FPC1 133.3 101.3

FPC2 55.3 38.3

FPC3 35.8 20.7

FPC4 19.1 9.1

FPC5 8.9 4.2

FPC6 5.7 2.5

FPC7 3.6 1.7

FPC8 2.9 1.2

FPC9 2.4 1.1

FPC10 1.8 0.85

FPC11 1.7 0.68

FPC12 1.3 0.45
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voiceless sound, as the glottis cannot be simultaneously closed

and vibrating. However, there are two reasons why we did not

simply label all such syllables as beginning with a voiceless

consonant. First, glottal stop is not always inserted in this con-

text, being most likely after a higher order break, such as B4

or B5. Second, recent research on this topic [for example,

Borroff61 (p. 82)] has shown that voicing is often continuous

through a perceived glottal stop. Thus, glottal stop is neither

predictably present, nor always voiceless. For these reasons,

we have labeled zero-initial as neither voiced nor voiceless but

its own category. Furthermore, break counts were allowed to

assume squared and cubic values, as this would allow up to a

cubic form of down-drift in the final model. In addition to the

inclusion of speaker identity as a random effect, which was

included for reasons such as age, sex, health, and emotional

condition among others, utterance instance was incorporated

as a random effect, since it is known that pitch variation is

associated with the utterance context (e.g., commands have a

different F0 trajectory than questions).

The initial analysis shows that in all cases, the random

effects of speaker and sentence were found to be significant,

in spite of the fact that certain effects (especially sentence)

appeared to be rather smaller than the actual model residuals

(Table V).

Furthermore, it is shown that while third order interac-

tions are not present in the analysis of the first FPC (this

being partially expected as the first FPC appears to specify

curve placement) third order interactions are present on the

modeling of the second and third FPCs, those that appear to

represent phonological rather than physiological features. In

addition, the second eigenfunction reflects a considerable

proportion (9.78%) of the total sample variation; thus signifi-

cantly affecting the beginning and the end of the curve, dic-

tating the syllable’s overall trend.

We now outline the role that each individual eigenfunc-

tion plays in the F0 curve formation. As mentioned, the first

eigenfunction appears to have a shifting effect on the F0

curve itself, raising or lowering the overall F0. In contrast,

the second, third and fourth eigenfunctions have an average

effect on the F0 curve quite close to 0 over the entire trajec-

tory (as can easily be seen on the plots themselves). There-

fore FPC-2, -3, and -4 do not have an overall shifting effect

on the curve, but rather only dictate properties of the curve’s

shape, essentially bending it.

Finally, it should be pointed out that FPC-4 findings

were rather interesting linguistically in the sense that the

sinusoid-like suggested F0 formation does not correspond to

any known/formal individual Mandarin tones. Nevertheless,

FIG. 2. Mean function and first, second, third, fourth, fifth, and sixth functional principal components. Together these account for 99.994% of the sample var-

iance, but only the first four have linguistic meaning (99.933 % of samples variation) and as such the fifth and sixth were not used in the subsequent analysis.

TABLE III. COSPRO break annotation.

Break type Meaning

Break 1 Normal syllable boundary. In written Chinese, this corresponds to one character. (As this is our experimental

data unit, B1 is equivalent to the mean value in the regressions and thus not included separately).

Break 2 Prosodic word boundary. Syllables group together into a word, which may or may not correspond to a lexical word.

Break 3 Prosodic phrase boundary. This break is marked by an audible pause.

Break 4 Breath group boundary. The speaker inhales.

Break 5 Prosodic group boundary. A complete speech paragraph.
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it appears native speakers do indeed exhibit components of

sinusoidal-shape in their production of F0, as FPC-4

accounts for 19 Hz variation, hence represents an audible

signal. It is likely that this F0 curve component is needed to

move between different tones in certain tonal configurations,

as will be discussed below.

Reviewing each model eigenfunction in an individual

manner it is important to stress the main qualitative features

that each model suggests. We must also note that during the

modeling procedure the fixed effects do not incorporate an

intercept as such. Tone 1, the presence of a voiceless next

consonant, the absence of a next or a previous tone and the

vowel_type @ (schwa) served as intercepts in the cases of

tones, consonants, next or previous tone and vowel type

covariates, respectively. (For a detailed listing of the relevant

covariates and the jackknifing results please refer to the sup-

plementary material,16 Secs. VI–VIII.) Taking into account

the results from AIC and jackknifing, the following model

for FPC1 was chosen:

FPC1 ¼ tnprevious 	 tncurrent

� 	�
þ tncurrent 	 tnnext½ �

þ cnprevious 	 tncurrent

� 	
þ tncurrent 	 cnnext½ �

þ cnprevious 	 tnnext

� 	
þ B2ð Þ þ B2ð Þ2þ B2ð Þ3þ B3ð Þ þ B3ð Þ2
h
þ B3ð Þ3þ B4ð Þ þ B4ð Þ2þ B4ð Þ3

þ B5ð Þ þ B5ð Þ2þ B5ð Þ3
i
	 Sexþ rhymet½ �gb

þ Sentence½ � þ Spkr ID½ �f gcþ �: (15)

The first eigenfunction is almost exclusively associated

with the speaker’s F0 curve placement. Complex third order

tonal interactions were not present. The speaker-identify ran-

dom effect is significantly high despite the inclusion of

speakers’ sex as a covariate. Thus, this random effect cap-

tures speaker related variance that cannot be accounted for

by indexing the sex of the speaker alone. Tones-2, -3, and -4

register lower in F0 than tone 1. Also, a number of rhymes

appear to have significant associations with the first eigen-

function, indicating that a number of rhymes have a charac-

teristic influence or shift on F0 (see supplementary

material,16 Sec. XI). These results are all relatively well

known, but it is reassuring to find them all present in the

model.

The type of voicing of the rhyme’s neighboring conso-

nants is of significance for all tone types. Specifically, the

voicing of the preceding consonant resulted in a statistically

significant lower overall F0 placement, when compared to the

F0 placement associated with a preceding voiceless conso-

nant. Overall, voiced neighboring/initial consonants (includ-

ing epenthetic glottal stop) resulted in lower F0 placements,

although the value of the effect depended on the tone type.

Break types B2, B3, and B4 associated both with males

and females are statistically significant emphasizing the role

of speech units larger than the word (but smaller than the

utterance) on the formation of F0. In contrast, B5 breaks, in

effect syllable index within the utterance, did not appear sig-

nificant individually in terms of p-values; however, AIC

deemed them worthy of incorporating as a group, yielding a

cubic curve, thus demonstrating that while one covariate

TABLE V. Random effects and 95% highest posterior density confidence intervals for the first, second, third, and fourth FPC scores models as produced by

using 10 000 samples.

FPC1 estimate

(95 lower, 95 upper)

FPC2 estimate

(95 lower, 95 upper)

FPC3 estimate

(95 lower, 95 upper)

FPC4 estimate

(95 lower, 95 upper)

Speaker 71.7510 (37.479, 152.281) 4.6889 (2.333, 22.050) 6.9769 (3.824, 16.035) 3.0921 (1.492, 6.543)

Sentence 30.8339 (26.875, 31.330) 3.4920 (2.782, 4.037) 1.9485 (1.637, 2.180) 0.5968 (0.350, 0.752)

Residual 118.9193 (118.306, 119.712) 45.0915 (44.833, 45.380) 21.2468 (21.126, 21.382) 12.1229 (12.053, 12.196)

TABLE IV. Covariates examined in relation to F0 production in Taiwanese Mandarin. Tone variables in a five-point scale representing tonal characterization,

5 indicating a toneless syllable, with 0 representing the fact that no rhyme precedes the current one (such as at the sentence start).

Effects Values Meaning Notation mark

Fixed effects

Previous tone 0:5 Tone of previous syllable, 0 no previous tone present tnprevious

Current tone 1:5 Tone of syllable tncurrent

Following tone 0:5 Tone of following syllable, 0 no following tone present tnnext

Previous consonant 0:3 0 is voiceless, 1 is voiced, 2 not present, 3 sil/short pause cnprevious

Next consonant 0:3 0 is voiceless, 1 is voiced, 2 not present, 3 sil/short pause cnnext

B2 linear Position of the B2 break in sentence B2

B3 linear Position of the B3 break in sentence B3

B4 linear Position of the B4 break in sentence B4

B5 linear Position of the B5 break in sentence B5

Sex 0:1 1 for male, 0 for female sex

Rhyme type 1:37 Rhyme of syllable rhymet

Random effects

Speaker N(0, r2
speaker) Speaker effect spkrID

Sentence N(0, r2
sentence) Sentence effect sentence
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value might exhibit insignificant effects, the group might be

quite important. A more detailed examination of the break

term coefficients reveals more information about the down-

drift effects in the samples. These suggest that, as the

speaker progresses, while F0 might exhibit short jumps

because of the generally additive effect of B2, the negative

effects of B3 and B4 start to carry more weight and the

down-drift becomes more prominent forcing the F0 estimate

to be lower. Furthermore, the break interactions with

speaker’s sex suggest that, male speakers do not exhibit

B2-related effects to such an extent but due to their B3 and

B4-related interaction their F0 track drifts to lower fre-

quency levels more smoothly as the additive lowering effects

of B3 and B4 influences become more prominent. These

types of features are reminiscent of the kinds of features that

can be explored using a Fujisaki approach to the data.

The model for FPC2 was chosen as

FPC2 ¼ tnprevious 	 tncurrent 	 tnnext

� 	�
þ cnprevious 	 tncurrent 	 cnnext

� 	
þ B2ð Þ þ B2ð Þ2þ B2ð Þ3þ B3ð Þ þ B3ð Þ2
h
þ B3ð Þ3þ B4ð Þ þ B4ð Þ2þ B4ð Þ3

i
	 Sex

þ B5ð Þ þ B5ð Þ2þ B5ð Þ3
h i

þ rhymet½ �gb

þ Sentence½ � þ Spkr ID½ �f gc þ �: (16)

The second eigenfunction scores exhibit third order inter-

actions incorporating both triplet types tested, previous_tone:

current_tone: next_tone and previous_consonant: current_-

tone: next_consonant. These kinds of interactions are of im-

portance as they reflect not only physiological but also

linguistic relations in the language corpus. At first glance, only

uncommon triples (such as the tone triple 1-4-3 or 1-3-2 and

the consonant-vowel-consonant triplets where the tones-2 and

-3 occur in-between voiced consonants) appear statistically

significant. Nevertheless, the effects that both third order inter-

actions groups have in the final modeling outcome were found

to enhance the whole model in a statistically significant way

by AIC. It is noteworthy that both the speaker’s identity and

the sentence random effects carry almost equal weighting in

the eigenfunction’s final formation, but their individual

impacts are a whole scale of magnitude smaller than the mod-

el’s residual (see Table V). Thus, while they are not excluded

by the model during our selection procedure, it is clear that

their effect (or rather lack of it) suggests that non-linguistic

covariates play a lesser role in the formation of this FPC. As

expected from the shape of FPC-2, tones 2 and 4 appear signif-

icantly affected by the second eigenfunction, as the slopes of

these two tones are phonological mirror-images. As a conse-

quence, the two have actual parameter values of opposite signs

(�73 and 95 for tones 2 and 4, respectively). Analogous with

the known Mandarin tones, the negative parameter effect in

tone 2 will cause tone 2 curves to have an upward curvature,

while a positive parameter effect in tone 4 will cause down-

wards bending of the syllable’s curve. Fewer rhymes appear to

be associated with FPC-2 and thus with the shaping of its con-

tour. Breaks do come through as significant covariates, despite

not having significant interactions with the speaker’s sex,

showing that the overall down-drift effect in an utterance is a

sex-independent phenomenon for this FPC. Finally, the voic-

ing nature of the adjacent neighboring consonants proved of

importance both individually and in association with the sylla-

ble’s tone. The influence of a voiced initial consonant was

negative overall, resulting in lowering the start and raising the

end of the F0 curve. However, the following consonant’s voic-

ing effect depended mostly on the associated tone.

The scores associated with FPC3 had the following

model chosen:

FPC3 ¼ tnprevious 	 tncurrent

� 	�
þ tncurrent 	 tnnext½ �

þ tnprevious 	 tnnext

� 	
þ cnprevious 	 tncurrent 	 cnnext

� 	
þ B2ð Þ þ B2ð Þ2þ B2ð Þ3þ B3ð Þ þ B3ð Þ2
h
þ B3ð Þ3

i
	 Sexþ rhymet½ �gb

þ Sentence½ � þ Spkr ID½ �f gc þ �: (17)

The third eigenfunction possibly plays a dual role.

Firstly, it is most associated with tone 3 in terms of its cova-

riate value, which is unsurprising given its shape. It also

appears to have strong effects on many tonal and voicing

interactions, indicating that it is being used to transition

between syllables. In addition, the speaker’s identity random

effect appears to play a statistically significant role to the

eigencomponent’s final weighting, especially when com-

pared to the sentence effect. FPC-3 appears to carry statisti-

cally significant associations with the majority of different

rhymes considered; suggesting that a hill, valley or a flatten-

ing in the curvature of the rhyme of the vowel is a prominent

feature. Furthermore emphasizing the linguistic and local

relevance of FPC-3, B2 and B3 break types appear to have

the highest association both as individual covariates and in

interaction with sex.

As in the case of FPC2, the voicing nature of the sur-

rounding consonants interacting with the current rhyme tone

influences the final curvature. This effect was most promi-

nent in the cases where the rhyme occurred immediately af-

ter a short pause or another rhyme (i.e., there was no

preceding consonant) and resulted in the curvature exhibit-

ing a clear hill-top tendency. Also noteworthy is that this

eigenfunction appears to have significant interactions when

modeling adjacent pairs of the same tone, its positive influ-

ence easily seen in the cases of tones-2 and -3.

The model for the fourth FPC was chosen as

FPC4 ¼ tnprevious 	 tncurrent

� 	�
þ tnnext½ �

þ cnprevious 	 tncurrent

� 	
þ tncurrent 	 cnnext½ �

þ cnprevious 	 cnnext

� 	
þ B2ð Þ þ B2ð Þ2þ B2ð Þ3þ B3ð Þ þ B3ð Þ2
h
þ B3ð Þ3

i
	 Sexþ B4ð Þ þ B4ð Þ2þ B4ð Þ3

þ rhymet½ �gbþ Sentence½ �f
þ Spkr ID½ �gc þ �: (18)
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This fourth eigenfunction, which does not display the

shape characteristics of a single Mandarin tone, shows strong

association with the voicing of the next initial consonant.

This eigenfunction appears to reflect strongly localized

effects mostly associated with the transition from one tonal

segment to another. As expected, specific tones do not ex-

hibit correlation with this eigenfunction, however, the inter-

action between current_tone and next_consonant appears

statistically significant in all cases; suggesting a phonetic

functionality that is associated with linguistic characteristics

of the following syllable. While only a handful of rhymes

appeared to have statistical significance in terms of p-values,

AIC does not exclude them, showing that at least part of the

eigenfunction’s shape is indeed reflected in the rhyme shap-

ing. Another important issue is that breaks 2 and 3 (prosodic

word and phrase) have much influence on the F0 contour

through this eigenfunction. B4 (breath group) has a very

small influence, and B5 (paragraph) was not deemed statisti-

cally significant enough to even incorporate. Thus, this

eigenfunction reflects the influence of prosodic units no

larger than the prosodic phrase. It can be suggested that such

a small percentage of F0 variance approaches the limit of the

explanatory power of our modeling rationale. Therefore,

fluctuations smaller than this (small) magnitude are due to

articulatory and/or phonetic effects that are beyond the

mostly linguistic covariates the current model entails.

Choosing the relevant covariates from each FPC for the

syllable of interest, summing them up and using this sum as

a factor to weight the influence of each respective eigenfunc-

tion to the original sample mean yields the final F0 estimate

(see Figs. 1 and 4). Here the estimates correspond to generic

speakers and to estimations of the behavior of the underlying

Gaussian process. The estimates do not specify individual

speakers; therefore the random effects are set to 0 across all

FPC’s as random effects always have mean 0. As can be

seen, the example tone estimates (Fig. 3) generated by the

model exhibit qualitatively similar characteristics with those

of the YR Chao tone chart.62

Table VI gives a brief overview of each eigencompo-

nent model’s performance in terms of adjusted R2
a with and

without the incorporation of random effects.25 It is immedi-

ately seen that the overall adjusted R2
a score is declining as

the models try to capture the highly variable nature of each

higher order individual eigencomponent. Nevertheless, in all

cases the inclusion of random effects seems beneficial and

was not rejected by the full sample AIC model comparison

or the jackknifing model selection procedure. While the third

and fourth components’ R2
a are very low, this likely results

from the inherent variability in the sample data being cap-

tured by these components, beyond the explanatory factors

available to model the data (such as speaker mood through

the experiment, changes in attention, etc.).

Given the break information in the model, it is also pos-

sible to construct the F0 track for rhymes over time. As can

be seen in Fig. 5, the curves estimated from the models are

not only fairly good fits to the data on a rhyme by rhyme

basis (with of course the expected estimation error), but the

overall time normalized track from rhyme to rhyme is cap-

tured through the break covariate estimation. (See supple-

mentary material,16 Table X, for a detailed listing of relevant

covariates.) Thus, in a similar manner to the Fujisaki frame-

work, estimation can be achieved for tracks both associated

with single rhyme curves and also longer phrasal (multiple

rhyme) instances.

IV. DISCUSSION

Overall, the presented methodology allows for an analy-

sis of the linguistic corpus at hand. Specifically, the qualita-

tive analysis of the eigenfunctions suggests the strong

FIG. 3. Example tone estimates produced by the model utilizing all four

FPC’s. Tone 5 is not represented as it lacks a general estimate, always being

significantly affected by non-standardized down-drift effects. Phonologi-

cally, toneless syllables do not specify a pitch target.

TABLE VI. Adjusted R2 scores for the selected linear models before and af-

ter the inclusion of speaker and sentence related random effects.

FPC No. LM�R2
a LME�R2

a

FPC1 0.6271 0.7056

FPC2 0.6109 0.6161

FPC3 0.3645 0.4136

FPC4 0.1083 0.1491
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dependence of pitch level to the speaker’s identity. The

influence of triplets in the case of tones 2 and 4 and the sub-

sequent slopelike shape they exhibit is also demonstrated in

the case of tone 2 where F0 initially drops before the rise,

the effect being most prominent when tone 2 is spoken after

either a tone 1 or tone 2. The model also suggests that statis-

tically significant differences are present on the down-drift

effect between speakers of different gender. Nevertheless,

excepting FPC1 (the curve’s F0 placement component), all

the other FPC’s did not show significant associations with

the speakers’ sex, suggesting that males and females have

the same generic tone shapes; the actual shaping is statisti-

cally gender-independent. Furthermore, the fact that a num-

ber of rhymes have specific shaping attributes that are

concurrently speaker and sentence independent is also put

forward. The model proposes that the presence of voiced

consonants adjunct to a rhyme alters its curvature to a note-

worthy level; thus it is essentially validating empirically the

sequential target approximation assumption used by Promon

et al. in the qTA model.23 Additionally, an interesting, yet

not surprising, result is that as the modeling procedure

focuses on higher order FPC’s, higher order breaks (namely,

B4 and B5) seem to carry decreasing importance to the final

model. This result is in line with the fact that higher order

FPC’s reflect more localized effects influenced by changes

in B2 and B3 indexing. The model estimates (Fig. 4) show

that the proposed model succeeds in capturing the overall

dynamics of the speaker’s pronunciation, giving good quali-

tative and quantitative estimates. (Tone 1: sentence 564,

word 2; tone 2: sentence 124, word 1; tone 3: sentence 336,

word 1; tone 4: sentence 444, word 4; tone 5: sentence 529,

word 3. See supplementary material,16 Table IX, for a

detailed listing of relevant covariates.) This success is

obtained despite the fact that the sample exhibits large

FIG. 4. One randomly selected syllable for each of the five tones; the functional estimates (bold) for each different tone are shown as well as the correspond-

ing original speaker interpolated data over a dimensionless rhyme time interval t. [Estimated vowel rhymes: [uei, o˛, @˛, uan, @] for each of the five tones,

respectively. See supplementary material (Ref. 16) for contextual covariate information.]

FIG. 5. Randomly chosen F0 trajec-

tory over (normalized) time. Here

six concurrent F0 tracks for rhymes

are shown for speaker F03. As can

be seen, the match is fairly close for

most syllables, with the estimates

associated with the break informa-

tion controlling the temporal down

drift effects [Tonal sequence: 2-1-4-

4-2-5; estimated vowel rhymes: [i, —,

ai, @, yen, @]. See supplementary ma-

terial (Ref. 16) for contextual covari-

ate information.]
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variance and possible distortion through its measurements

even after the initial data were preprocessed. Note that Shih

and Kochanski63 ran into similar issues concerning distorted

tone shapes. Collectively, these findings are in line with

those of other studies,5 specifically when reviewing the

effect of adjacent tones. Durational differences are not taken

into account by the current modeling approach. Possible

future work would benefit from incorporating time-warping

normalization on the rhyme time in order to ensure that pos-

sible discrepancies due to durational differences are

excluded.

The current findings are also analogous to those of

Aston et al.15 in their study on Luobuzhai Qiang, a tonal

Sino-Tibetan language of Sichuan Province in central-

southern China. It could be of interest to review and compare

these findings with those of other languages, especially those

that are genealogically and geographically distant, to high-

light any differences found in the components recovered

from the F0 trajectory.

Each of the FPCx models constructed are unit but not scale

invariant; alternative models could be postulated for semitones

or bark scale following the same methodology.

Indeed the analysis was repeated using a semitone scale

but the contours recovered were almost identical. Other

effects, such as the text frequency of the syllable were not

incorporated as model covariates. While it could be argued

that this would upgrade the overall performance of the

model, this would nevertheless steer the model away from

its phonological foundations. Therefore, inclusion of such

factors as text frequency, duration, intonation pattern, etc.,

remains for future research. Moreover, because of the time-

normalization, observed curvature fluctuations are per sylla-

ble rather than on an absolute time scale. To test our methods

against a parametric family of basis functions which has pre-

viously been suggested (Ref. 9), the full body of the analysis

was reimplemented using Legendre polynomials, shifted and

normalized in L2 [0, 1] as a set of basis functions for the data

instead of FPC’s. This representation gave very similar ex-

planatory results, because of Legendre polynomials having

similar shape to the FPC’s. However, as discussed in the

Introduction, Legendre polynomials do not represent an opti-

mal basis in terms of most variation of the data explained

(see supplementary material,16 Sec. IV) and thus the first

four Legendre polynomials explain a smaller amount of the

data’s variation than the amount of variation explained by

the first four eigenfunctions.

The model’s novelty is that while the syllable curve was

assumed to be part of the whole utterance as in the Fujisaki

approach, the syllable curve itself was treated as a continu-

ous random process modeled by different FPCs. In addition,

micro-prosodic phenomena also known to be present are not

systematically excluded by the current framework. In that

sense, statistical methodology is the mechanism excluding

irrelevant or immeasurable components of the sample. As

the FPC’s are orthogonal to each other, FPC scores account

for non-overlapping variations. Higher degrees of FPC’s

might reflect further micro-prosodic variations than the ones

recognized by this study, but as the total amount of informa-

tion in these FPC’s is considered below an auditory thresh-

old, these FPC’s are rendered unnecessary to the actual

modeling procedure.

The future goals of this project are three-fold. First, by

using the model, it may be possible to make meaningful infer-

ence from other corpora allowing more realistic speech recog-

nition and speech processing. Secondly, by taking advantage

of the surrogate variables generated (FPC’s, covariance surfa-

ces, etc.), possibilities arise to infer associations between lan-

guages that share common phonological characteristics, under

a functional phylogenetic framework. Such framework has

already been sketched by Aston et al.64 Third, by validating

this method on a language where many of the effects on F0

are known, it now becomes possible to investigate numerous

effects and their interactions in the production of F0 in less-

studied languages, and to be confident of the results.
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