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A model for fundamental frequency (FO, or commonly pitch) employing a functional principal
component (FPC) analysis framework is presented. The model is applied to Mandarin Chinese; this
Sino-Tibetan language is rich in pitch-related information as the relative pitch curve is specified for
most syllables in the lexicon. The approach yields a quantification of the influence carried by each
identified component in relation to original tonal content, without formulating any assumptions on
the shape of the tonal components. The original five speaker corpus is preprocessed using a locally
weighted least squares smoother to produce FO curves. These smoothed curves are then utilized as
input for the computation of FPC scores and their corresponding eigenfunctions. These scores are
analyzed in a series of penalized mixed effect models, through which meaningful categorical proto-
types are built. The prototypes appear to confirm known tonal characteristics of the language, as
well as suggest the presence of a sinusoid tonal component that is previously undocumented.

© 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4714345]

PACS number(s): 43.60.Cg, 43.60.Uv, 43.66.Hg [MAH]

. INTRODUCTION
A. Theoretical background

Speech sounds consist of complex periodic waves char-
acterized by their frequency and amplitude. Phonetic sound
properties of research interest include the pulse, intensity,
sound wave components, spectrum, and/or duration of the
examined sound segment, as well as fundamental frequency
(FO0), the focus of this paper. FO as a speech phenomenon is
the major component of what a human listener identifies as
pitch and relates to how fast the vocal folds of the speaker
vibrate during speech.'”

While in many languages pitch differences are mostly
detected in matters of intonation or semantic alterations
(such as expression of sarcasm), in tonal languages, such as
Taiwanese Mandarin, pitch (and the closely related FO) plays
a crucial role in the actual lexical entry of the word. As such,
ma (") said with a mid rising tone means hemp, while
articulated with a high falling tone, ma (), means fo scold.
In the past, linguistic studies treated FO as a single point by
utilizing target values®* or obtained estimates of the FO con-
tour by treating it as a bounded rigid curve through processes
of averaging.” Such approaches, by necessity, impose simpli-
fying assumptions which make interpretation difficult when
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considering a complete corpus of data from a more natural
language experiment.

In this paper, a different approach is adopted. We pro-
pose a model where the FO curve is characterized as the real-
ization of a stochastic Gaussian process.° A Gaussian
process is essentially a generalization of a multivariate Gaus-
sian random variable to an infinite index set.” As a conse-
quence, our methodology treats the fundamental frequency
of each rhyme as a bounded continuous curve, rather than a
time-indexed vector of readings.

Functional data analysis offers tools for analyzing data
that consist of functions—often but not always, smooth
curves.® In the current study, a functional principal compo-
nent analysis (FPCA) is first performed on the data set’s FO
measurements to extract the principal curves, those curves
which explain the most variation in the data. Similar
approaches might utilize Legendre polynomials,” quadratic
splines,'® or Fourier analysis to derive lower and higher
ranking basis functions that would correspond to slower and
faster varying components of the utterance. However, these
functions are fixed in advance rather than derived directly
from the data and are not guaranteed to be optimal in terms
of the minimal number required to explain a certain percent-
age of the variation in the data as in the case of principal
component functions.''

Building on the FPCA findings, the functional principal
component (FPC) scores are used as the dependent values in
a series of linear mixed effect (LME) models, allowing the
scores to act as proxy data for the complete curves. The
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scores essentially quantify the weight each FPC carries in
the final FO curve formation, and will be described in further
detail in Sec. II. LME models allow the inclusion of both
fixed and random effects to achieve a flexible modeling of
the data. In the current case, the difference between individ-
ual speakers due to genetic, environmental'? or even chance
factors'? are modeled as a series of random additive effects
acting on the FO contours.'*'” In order to compute the
FPC’s, the sample mean is subtracted from the data, and the
covariance of the data then calculated, in a similar way to
standard multivariate principal component analysis. Another
possible approach would be to subtract the speaker specific
mean from each syllable, prior to further analysis. We chose
not to follow this direction as determining the effect of
speaker on each of the components is of interest. However,
as might be expected, the two approaches yield very similar
results (see supplementary material,'® Sec. III).

The methodology presented here addresses the issue that,
while it has been widely accepted and documented that FO
undergoes variations due to phonetic processes in speech pro-
duction that are attributed to fixed effects (e.g., the sex of the
speaker), unmeasurable variables such as the length of the
speaker’s vocal folds or the state of their health, also affect
the final FO utterance. This measurability problem is coun-
tered by considering such covariates as random effects. This
theoretical perspective is not ad hoc; it corresponds directly
with the linguistic, para-linguistic and non-linguistic parame-
ters presented in the work of Fujisaki.'”'® The Fujisaki model
implementations have been extended by Mixdorff'® to
account for micro-prosodic effects by taking advantage of the
MOMEL algorithm.'® Other approaches utilize the automatic
intonation modeling approach as offered by the INTSINT
(Refs. 20, 21) and/or the TILT algorithmic implementations.22
Furthermore the qTA model®® also builds on Fujisaki’s
assumption, proposing a description of the physiological
mechanisms behind FO production, a goal somewhat different
from the one in this paper. In the present framework and anal-
ogous to the Fujisaki rationale, FO is the dependent variable of
interest with standard fixed effects such as the vowel in the
rhyme corresponding to linguistic effects, sentence variations
and break points within the utterance corresponding to para-
linguistic effects, and speaker variations corresponding to
non-linguistic effects.

As Evans er al. have already presented®® and Aston
et al. have further extended,'” the explanatory power that
can be yielded from the application of LME models for FO is
insightful in cases of tonal languages. In the current study,
the FO track of each rhyme in the utterance is used; as a
result, while the two previously mentioned works focused on
one position in a frame sentence, in this project a large num-
ber of read texts of varying lengths are investigated, adding
new dimensions of complexity and further enhancing the
generality of the approach by analyzing complete corpus
data. In addition, while the previous studies utilized two pho-
nologically level tones, Mandarin has both level and contour
tones as well as toneless syllables and thus poses a signifi-
cantly more complex analytical challenge.

As a starting point, a smoothing and interpolation proce-
dure is utilized to change the measurement from real-time

4652  J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012

into that of normalized syllable time, building partially on
the assumption of syllable-synchronization.”® Next, regres-
sion models are introduced to help identify significant cova-
riates of speech production. Afterwards, a penalized system
of model selection is put forward to obtain the final models.
Given the amount of data present in the study, over-fitting is
a concern, and therefore a penalty on the number of regres-
sors in the model is imposed through an AIC approach (as
outlined by Faraway”’) and jackknifing is also implemented
to further enhance and test the robustness of the findings.
This use of FPCA and mixed effects modeling offers a gen-
eralized semi-parametric approach to the linguistic modeling
of Mandarin Chinese FO.

The application of FDA (functional data analysis) in
relation to linguistics is not without precedence. The early
work of Ramsay ef al.?® used FDA to model the coordinates
of lip motion in order to infer basic principles of lip coordi-
nation. Since then a number of speech production related
questions associated with articulatory issues,”’>° as well as
with issues of physiological interests,>>? have been
addressed with FDA. The current work differs from the
above mentioned projects by employing an entire corpus as
raw data. Rather than using a small linguistic sample by a
single speaker,'® employing monosyllabic utterances and a
small number of sentences>” and/or frames within the utter-
ances>'3?"% to minimize possible confounds at the data
collection level, a large corpus is analyzed and the con-
founds explicitly modeled. In contrast to existing intonation
synthesis algorithms, the current methodology’s primary
goal is to offer insights into how linguistic and non-
linguistic factors combine in the estimation of FO and
presents an auxiliary approach for existing speech synthesis
algorithms in terms of modeling the acoustic shapes of
tones.

B. Dataset presentation

The Sinica Continuous Speech Prosody Corpora 1
(COSPRO-1) is a large-scale comprehensive data-set con-
sisting of recordings of Taiwanese Mandarin read speech.>*
Five participants each uttered a total of 599 predetermined
sentences. After pre-processing and annotation, their utteran-
ces, having a median length of 20 syllables, resulted in a
total of 54 707 frequency curves. Each FO curve corresponds
to the thyme portion of one syllable. The three female and
two male participants were native Taiwanese Mandarin
speakers. The recordings themselves were conducted by the
Institute of Linguistics, Academia Sinica in 1994. Using the
in-house developed speech processing software package
cosPrO TOOLKIT,”*** the fundamental frequency (F0) of each
rhyme utterance was extracted at 10 ms intervals, a duration
under which the speech waveform can be regarded as a sta-
tionary signal.*® Associated with the recordings were charac-
terizations of tone, rhyme, initial consonant as well as
speech break or pause; the presented corpus is a real lan-
guage corpus, designed to include all tonal combinations but
still have semantic meaning. The syllables are labeled with
the four lexically specified tones as well as encoding that
some syllables are phonologically toneless (tone 5), and
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additional contextual information is also associated with
each curve (see Table IV for a list of covariates included).
This data set has been previously analyzed using a Fujisaki
approach.”’

Il. STATISTICAL METHODOLOGY
A. Functional data analysis

Ferraty and Vieu provide the following definition: “A
random variable x is called a functional variable if it takes
values in an infinite dimensional space (or functional
space).”® Here we interpret the FO trajectory as observed
functional data. Based on the Ferraty and Vieu definition and
given that the examined dataset is indeed in curve-form, the
current study adopts the notion put forward by Chiou et al.,
that “each observed curve is a (independent) realization of a
stochastic process reflecting the random nature of the indi-
vidual curves.”” As a logical result, given a stochastic pro-
cess Y(1), te, [0,1] the sample curves can be thought of as
having a mean E[Y(¢)]=u(f) and a covariance cov[Y(s),
Y(6)] =C(s, t). Taking advantage of the symmetric nature of
C (C(s, ) =C(t, 5)) the following spectral decomposition fol-
lows by Mercer’s theorem™® for C(s, t):

Clo )= ind ()b, 1), )

where A; > 1, > -+ >0 are ordered eigenvalues of the opera-
tor C and ¢,’s are the corresponding eigenfunctions.

Going back and reviewing the notion of PCA, it is worth
noting that PCA is not only a convenient transformation for
dimensionality reduction; the principal components (PCs)
themselves serve as characterizations of the sample’s trajec-
tories around an overall mean trend function,*! in other
words each PC gives a representation of the FO contour com-
ponents for our data. As Castro et al. briefly summarized in
their seminal work on continuous sample curves,** given a
vector process Y = (y1, y2, ..., y,,)T, where yi, ys, ..., y, are
scalar vectors, an expression of the form

Z=M+Y aZ,() ®)

v=1

a0

is called a m-dimensional model of Y, where M denotes the
mean vector of the process, Z;, Z,, ..., Z,, are fixed unit length
p vectors and a4, 0y, ..., o are scalar variates dependent on Y.
Proposing now that a process Y(f) is observed at p distinctive
times 1y, f,, ..., 1, it yields the analogous random vectors y(7),
describing the stochastic process Y = (y(¢1), y(t2), ..., y(t,,))T,
fitting perfectly with the theoretical notions of longitudinal
data being a variation of repeated measurements. Therefore,
coming back to the original notion of a stochastic process
Y (¢), the m-dimensional linear model for such process is

Vi) = () + > b, (), 3
v=1

where «, are once more the uncorrelated random variables
with zero mean and refer to the wth principal component
score of the jth subject and ¢, are linear independent basis-
functions, of the random trajectories Y;. This expansion (3) is
referred to as the Karhunen—Loe¢ve or FPC expansion of the
stochastic process ¥.*?

It must be noted here, that as Rice and Silverman
emphasized, the mean curve and the first few eigenfunctions
are smooth and the eigenvalues 4, tend to zero rapidly so
that the variability is predominantly of large scale.** In phys-
ical terms, smoothness of data is critical so that the discrete
sample data can be considered functional.'' A number of
smoothing techniques have been proposed over the years
concerning FPCA; linear smoothing, basis function methods
such as wavelet or regression splines bases, or smoothing by
local weighting using local polynomial smoothing or kernel
smoothing, being some of the most frequently encountered.
Kernel smoothing, considered to be the optimal choice in the
case of local weighting,”® is the one applied here due to its
simplicity and computational ease, yielding smooth sample
FO curves.

Utilizing the methodology proposed by Chiou ef al.* a
locally weighted least squares smoother, denoted by S, is
implemented, so local lines are fitted to the data. A point ¢ is
used as the center of a smoothing window or interval [t — b,
t+ b] where b is the fixed parameter commonly known as
bandwidth. The formal definition of the smoother itself is

SL{t; b, (1, y(t,-))l-zl__._’s} = a.rgmin{mailn <i:1((z ; ti) () — {ao + ai(r — tl-)}]2> }, 4)

i=1

where K is the kernel function selected, ¢ is the argument of
the smoother S;, b is the smoothing parameter (how big the
window of the smoother will be in relation to actual available
data-points), and (¢;, y(t;));—1....s is the actual data scatter-plot
consisting of s points. Using cross-validation the optimal band-
width b was found to be 3% of the total rhyme duration signi-
fying the fact that even the initial sample was quite smooth. It
must also be mentioned that for the data to be suitable for
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FPCA, besides the smoothing, time normalization is of impor-
tance. As the main focus of the present work is on the phonetic
FO contour shapes, the results it yields are implicitly time nor-
malized on a [0, 1] interval. Therefore all the data-curves were
not only smoothed but concurrently interpolated in a [0, 1]
interval in order to be directly comparable with each other,
resulting in FO curves on a rhyme time scale rather than in real
time. The reader will note that interpolation itself does impose
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a certain degree of smoothing, as well an ad hoc choice of the
number of points over which the interpolation takes place. The
actual readings in our study, after disregarding missing values,
had on average (15.38 =) 16 points per syllable, and based on
this estimate, the basis of 16 points is chosen. The analysis
was also conducted using 12- and 20-point interpolation so
that the impact of the smoothing could be more easily identi-
fied but this produced negligible differences. Furthermore, to
ensure the beginning and ends of each syllable are not sub-
jected to substantial smoothing errors due to limited data, the
beginning and the end point of the curve are not smoothed.

As a final remark on the smoother implementation, the
function K, denoting a non-negative kernel function, was
chosen to be a Gaussian basis function K (x) = e/, being
the most standard weight function and also ensuring that its
product is never negative.

Having established the smoothness of the data, the next
step in the actual implementation of the K-dimensional linear
model of Eq. (2) is the estimation of the mean function.
Given that we have an equispaced design, the overall mean
function is estimated as

1)‘1
1(t;) = — i(t), i=1,...,s, 5
)= 2 s 5)

where 7 is the number of sample FO curves available and s is
the number of points in each curve (in the current data,
54 707 and 16, respectively).

The final step to calculate the FPCA scores is actually
the most straightforward. Following the same methodology
as Aston er al.,"” the eigenfunctions are calculated by the
spectral analysis of the estimated covariance matrix

Clti, 1) Z {yi(n)

k, l e{l,...,s}.

(fk)}{yj(fz) - ﬂ(fl)}7

(6)

As a result, we can estimate the eigenfunctions ¢,,, which as
shown in Eq. (1), correspond to solutions of

Cltw, 1) ZAVQ') 1), (1), (7

where 1, 45, ..., 4,, are the ordered eigenvalues of the sys-
tem. Finally the FPCA A;, scores are estimated as

o= 3 {(6) — )} (1), ®)
=

where A;=t;—1;_;. These scores, A;,, are the ones finally
used for the estimation analysis by the LME. The choice and
number of FPC’s used is related to the amount of variation
that each of these components reflect. Given the large num-
ber of available sample utterances, a relatively high number
of FPC’s is required in order to account for phonetic effects
that might occur in just a relatively small number of sample
instances. Despite the need for statistical accuracy, it should
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be mentioned that the actual information content found in
the FPC scores is of importance. Thus, only the FPC’s
reflecting variation that is audible are selected. In reality,
only pure tone FO fluctuations above a 2 Hz threshold can
definitely be clearly perceived by the human auditory system
(just noticeable difference—JND);45 in the presence of
noise, JND is at a minimum of 10 Hz. As advocated by
Kochanski,*® in the case of human speech, the JND for pitch
motions seems to be rather larger. Black and Hunt* show
that a 9.9 Hz RMS error is not detrimental to the model’s
success. This threshold will be used throughout the paper;
however our approach is flexible enough for other practi-
tioners to utilize it with different cut-off thresholds.

B. Linear mixed effects models

Having determined the eigenfunctions and correspond-
ing FPCs from the data, the next step involves the LME
model construction and selection. LME models are models
in which both random and fixed effects occur linearly in the
model’s implementation. As Pinheiro and Bates*” presented:
“(LME models) extend linear models by incorporating ran-
dom effects which can be regarded as additional error terms,
to account for correlation among observations within the
group.” More formally, and using the classical linear mixed
effect model notation proposed by West et al.,*® combined
with the distributions notion presented by Faraway,” a
standard fixed effect model with normal errors:

Ay =X, +e or A, ~N(X,p, o’l) 9)

can be extended to account for random effects in the follow-
ing form:

Ay, =X,B+Zyy+e, or AV'V ~ N(Xz/ﬂ + 2y, 02[);
(10)

where in the presented case A, is the vector of length n x 1
of FPC scores associated with the vth FPC, X, is the n X p
model matrix, the vector ¢, of length n encapsulates the ran-
dom variables representing the error in the relation, and f is
a vector of length p that contains the linear (fixed) regression
coefficients, where p is the number of those coefficients. The
extension of this model now to account for mixed effects is
such that Z, is a model matrix n x r (Ref. 49) associated
with a vector y of random effects. It needs to be stressed that
random effects are by definition random variables them-
selves.'* As such, the y vector will follow a multivariate
Gaussian distribution y ~N(0, D), where D represents the
covariance matrix of the elements in vector 7. In a similar
manner, the error residual vector e also follows a multivari-
ate Gaussian distribution where € ~N(0, R) and R is the co-
variance matrix for residuals in vector .

Having established that y ~N(0, D) and e~ N(0, a’I)
the variance of « is subsequently written as

Var(A,) = Var(Z

L) + Var(e) = Z,DZ! + o*I (11)

resulting in the unconditional distribution:
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A, ~N(X,p, ¢’1 +Z,DZ)). (12)

Model construction requires the use of a definition for
the goodness of fit achieved by the model estimated. Exist-
ing literature suggests the log-likelihood function as a stand-
ard choice. Nevertheless, a number of issues have to be
highlighted. An important problem arising when estimating
the log-likelihood function of the data is that the unrestricted
maximum likelihood estimator (MLE) might involve a nega-
tive variance, which is clearly unacceptable. Moreover the
MLEs are biased. Given that the number of samples in the
random vector might be quite small, as in the case of speak-
ers, the difference between a biased and an unbiased MLE
can be significant. Therefore when estimating the final pa-
rameters, the restricted maximum likelihood (ReML) is
used. ReML tries in essence to find linear combinations of
the responses, k, such that k"X =0 and thus to exclude any
fixed terms parameters from the likelihood function.
However, ML is used for the model selection procedure as
the theory for model comparisons is based on ML estima-
tion. As ReML will try to transform the fixed effect response
in the manner described above, this would lead to a series of
different transformations for each model setting, making
them incomparable. Therefore it is essential to use ML esti-
mators if likelihood ratio tests are to be implemented.

For each FPC’s scores, the LME modelling procedure
was initiated by a model containing the maximal number of
linguistically plausible covariates. By employing an Akaike
information criterion (AIC) selection of the models exam-
ined, models with both important covariates and also parsi-
mony were identified.’*>" AIC for each model is defined as

AIC = 2(—loglik + q), (13)

where ¢ is the number of parameters in the model examined
and loglik the maximum value of the log-likelihood function
of the model. AIC chooses a model that is adequately
detailed to capture the variation exhibited in the data but
concurrently attaches a penalty as the number of included
covariates increases. This is achieved by the terms loglik and
q, respectively.

To assess significance and give confidence intervals for
the model’s estimates, highest posterior density intervals were
found'* using MCMC sampling for the chosen models. In
addition, in order to check the robustness of the results
obtained, jackknifing was performed by constructing partitions
of the data into five random sets and then examining 180 such
randomizations, comparing the models produced. In the case
of a discrepancy between jackknifing and AIC, the more parsi-
monious model was chosen. More details of the AIC scores
and jackknifing are given in the supplementary information.'®

Overall, the complete procedure to obtain the FO estimate,
once the components (in the example four chosen components
are used) and models are found, can be summarized by Fig. 1.

lll. DATA ANALYSIS AND RESULTS

We must emphasize that while the statistical robustness
of the methods employed is crucial, the actual targets of this
project are the phonetic significance and interpretation of its
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results. The analysis requires high-specificity as some tonal
combinations and other covariate interactions of interest are
relatively sparse within the data. Therefore, initially at least
99.99% of the total variation in the original data has to be
accounted for. This figure results from the need to ensure
effects that might only systematically alter a small number of
sample curves are not missed in the analysis. Thus, the first 12
FPC’s were selected as necessary to incorporate in the model-
ing procedure. This unusually large number of FPC’s was
also dictated by the fact that significant regression-related
effects might actually appear in a small percentage of the sam-
ple variation. These 12 FPCs account for the 99.992% of the
total variation in the sample (Table I). Nevertheless, in a worst
case scenario, even by accounting for such high variation, rel-
evant characteristics that may occur in five syllables or fewer
within the corpus could be filtered away (based on the residual
variation of the discounted FPC’s).

Moreover, given the large number of samples, by taking
the upper model percentile (99%) of the FPC scores and mul-
tiplying it by the maximum absolute value of each eigenfunc-
tion, we can effectively derive an upper limit of the actual
variation attributed to each component in Hz, the unit that was
originally used for measurement. This is of interest because
any actual variation found to be below the minimum threshold
assumed (9.9 Hz in this case) is likely to remain unnoticed.
This cut-off threshold in essence excludes all FPC’s with rank
equal to or higher than 5, which were previously deemed as of
possible importance (see Table II). Statistically, it should be
emphasized that our estimates of the maximum actual audi-
tory variation per FPC are quite conservative as they are based
on a 99% quantile. As shown in Table II, if a 95% quantile
were used, it would suggest that we actually exclude the com-
ponents that are below 4.2 Hz, a significantly narrower range.

The eigenfunctions of each principal component are
computed and used to compute the FPC scores relating to
each curve. As mentioned in the previous section, not only
the smoothness of the covariance function of this transfor-
mation is essential, but also the smoothness of the eigen-
functions themselves. A visual inspection of our results
confirms that the kernel smoothing undertaken was suc-
cessful, with the data being smooth enough for the notions
of FDA to be applicable (even though only a minimal
smoothing was performed). The covariance function
appears smooth throughout its values (see supplementary
material,'® Sec. II) as do the mean and FPC curves
(Fig. 2). It must be noted that the fifth and sixth FPC’s
seem somewhat less smooth in appearance, further signify-
ing that the transformation starts to reach an explanatory
threshold and these components start to exhibit the charac-
teristics of noise. It is also noticeable that the eigenfunc-
tions appear to exhibit a distinctive polynomial pattern,
with each successive FPC’s eigenfunction reflecting the
component rank in the eigenfunction’s curvature (Fig. 2).
This result concurs with the assumed contour shapes of
Grabe et al.® where Legendre polynomials LO to L3 were
utilized for the contour basis of FO to examine intonation.
In principal, given our statistical findings and the well
attested shapes of Mandarin tones in the literature, the ba-
sic tone curve of the syllable can essentially be
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FIG. 1. The first four eigencomponents (top row) are used to construct the final syllable estimate of FO (bottom row). The individual component magnitude
(third row) is calculated by using the weight estimates (w;) obtained as the sum of the relevant utterance covariates from the LME model and the component
specific random intercept (second row). Subsequently, these components added together produce the centralized syllable estimate (row 4). Finally, the addition
of the sample mean (row 5) produces the final syllable estimate of FO (bottom row).

reconstructed by using FPC1, FPC2, and FPC3, as can be
seen from the actual shape of those components, with
FPC4 allowing contextual movement between tones.

While the kernel smoothing and interpolation was imple-
mented by a custom built c+-+ program written by the first

4656  J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012

author, utilizing the GsL package,” the calculation for the
eigenfunction decomposition and the production of the FPC
scores was conducted using standard built-in MATLAB proce-
dures.” The rest of the analysis was carried out in the statisti-
cal environment r.>* Except for the obvious standard Rr
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TABLE I. Individual and cumulative variation percentage per FPC.

FPC No. Individual variation Cumulative variation
FPC1 88.23 88.23
FPC2 9.78 98.01
FPC3 1.42 99.43
FPC4 0.32 99.75
FPC5 0.11 99.86
FPC6 0.05 99.91
FPC7 0.03 99.94
FPC8 0.02 99.96
FPC9 0.01 99.97
FPCI10 0.01 99.98
FPCI11 0.01 99.99
FPCI12 0.01 99.99

methods used (qgplot(), Im(), etc.) the major body of the anal-
ysis was done using methods from the statistical package LME4
(Ref. 55) (for the LME model estimation and prediction) and
LanguageR (Ref. 56) (for the MCMC sampling required for the
construction of confidence intervals relating to the model’s
estimators). As mentioned earlier, we examined the robust-
ness of the selected models through jackknifing, and extensive
sub-sampling was implemented using 180 5-sub-sample parti-
tions of our original samples, yielding a total of 900 sub-
samples. (For a detailed discussion and relevant histograms
refer to the supplementary material,'® Sec. VIL.)

The model selection procedure was initiated by select-
ing a large but still linguistically plausible model and then
de-constructing it using AIC; excluding covariates that were
viewed as statistically redundant or insignificant. The fol-
lowing equation presents the original basis equation:

FPCx = {[m,,m,,-ou_Y * Merrent * Miext) -
- [Cnprﬂious * Meurrent * Cliexs |
+ [(B2) + (B2 +(B2)°
+ (B3) + (B3)*+(B3)’
+ (B4) + (B4)’+(B4)’
+ (BS) + (B5)*+(BS5) } « Sex + [rhyme,]}ﬁ
+ {[Sentence] + [SpkrID|}y + €. (14)

TABLE II. Actual auditory variation per FPC (in Hz) (human speech audi-

tory sensitivity threshold ~ 10 Hz).

FPC No. Hz (99%) Hz (95%)
FPC1 1333 101.3
FPC2 55.3 383
FPC3 35.8 20.7
FPC4 19.1 9.1
FPC5 8.9 42
FPC6 5.7 2.5
FPC7 3.6 1.7
FPC8 29 1.2
FPC9 2.4 1.1
FPC10 1.8 0.85
FPC11 1.7 0.68
FPC12 1.3 0.45
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The standard rR notation is used here for simplicity
regarding the interaction effects; [K*L] represents a short-
hand notation for [K + L + K:L] where the colon specifies
the interaction of the covariates to its left and right.”” Table
IV offers a list of each covariate and its definition. It must be
pointed out that, from the set of fixed effects, all fixed cova-
riates, with the exception of break counts, are in factor form.
Break (or pause) counts represent the number of syllables
between successive breaks of a particular type and are ini-
tialized in the beginning of the sentence and are subse-
quently reset every time a corresponding or higher order
break occurs. They represent the perceived degree of disjunc-
tion between any two words, as defined in the ToBi annota-
tions.> B2 break types correspond to smaller breaks occurring
usually at the end of words, while BS types occur exclusively
at a full stop at the end of each utterance; essentially signify-
ing an utterance boundary pause. Breaks B3 and B4 represent
intermediate or intonational phrase stops, respectively. Bl
breaks were not used as these are coincident with our data ob-
servation unit (i.e., each syllable). Table III offers a compre-
hensive list of what each break represents. Break annotation is
of great importance because physiologically a break has a
possible resetting effect on the vocal folds’ vibrations and
thus its duration and strength significantly affects the shape of
the FO contour, not just within a rhyme but across phrases.
During data generation, each speaker read the text in his/her
natural manner, and these recordings were then hand anno-
tated with break information. Allowing the break indexes to
form interactions with the speaker’s sex, the model can asso-
ciate different rates of curvature declination among male and
female speakers. This effect found to be usually associated
with lower order breaks (faster variational components). Fur-
thermore, the ability to allow different curvature declinations
between speakers of different genders enables the modeling
of more complex down-drift patterns. This approach allows
an analogy to be drawn with the phrase component used in
the Fujisaki modeling approach.'” The different tones of each
syllable may be associated with the accent component as pro-
posed by Mixdorff. The linguistic data were transcribed using
ASCII symbols™® to encode the nine vowels [9, &, a, e, i, &, y,
0, u]. Combinations of these vowels, with and without final
[—n, —n], add up to 37 rhymes, which are listed in the supple-
mentary material '® (Sec. V).

As shown in Table IV, 13 possible covariates (not count-
ing their interactions) were included in the model. Eleven of
them account for fixed effects and two for random effects. The
initial model incorporates three-way interactions and their em-
bedded two- and one-way interactions. Three-way interactions
have been known to be present in Taiwanese Mandarin and
therefore were deemed as significant effects to incorpo-
rate>'>>° both in the form of previous_tone: current_tone:
next_tone interaction as well as a previous_consonant: cur-
rent_tone: next_consonant interaction. Consonant refers only
to the consonant’s voicing status, not the identity of the sound.
Four levels were present in the consonant covariate. It is well
attested that syllables with no initial consonant in Chinese can
have an epenthetic glottal stop before the rhyme, as in the sec-
ond syllable of [tgiau?at] “proud” [e.g., as in Lin® (pp-
113-115, 173-174)]. The glottal stop [?] is defined as a
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FIG. 2. Mean function and first, second, third, fourth, fifth, and sixth functional principal components. Together these account for 99.994% of the sample var-
iance, but only the first four have linguistic meaning (99.933 % of samples variation) and as such the fifth and sixth were not used in the subsequent analysis.

voiceless sound, as the glottis cannot be simultaneously closed
and vibrating. However, there are two reasons why we did not
simply label all such syllables as beginning with a voiceless
consonant. First, glottal stop is not always inserted in this con-
text, being most likely after a higher order break, such as B4
or B5. Second, recent research on this topic [for example,
Borroff®! (p. 82)] has shown that voicing is often continuous
through a perceived glottal stop. Thus, glottal stop is neither
predictably present, nor always voiceless. For these reasons,
we have labeled zero-initial as neither voiced nor voiceless but
its own category. Furthermore, break counts were allowed to
assume squared and cubic values, as this would allow up to a
cubic form of down-drift in the final model. In addition to the
inclusion of speaker identity as a random effect, which was
included for reasons such as age, sex, health, and emotional
condition among others, utterance instance was incorporated
as a random effect, since it is known that pitch variation is
associated with the utterance context (e.g., commands have a
different FO trajectory than questions).

The initial analysis shows that in all cases, the random
effects of speaker and sentence were found to be significant,
in spite of the fact that certain effects (especially sentence)
appeared to be rather smaller than the actual model residuals
(Table V).

TABLE III. COSPRO break annotation.

Furthermore, it is shown that while third order interac-
tions are not present in the analysis of the first FPC (this
being partially expected as the first FPC appears to specify
curve placement) third order interactions are present on the
modeling of the second and third FPCs, those that appear to
represent phonological rather than physiological features. In
addition, the second eigenfunction reflects a considerable
proportion (9.78%) of the total sample variation; thus signifi-
cantly affecting the beginning and the end of the curve, dic-
tating the syllable’s overall trend.

We now outline the role that each individual eigenfunc-
tion plays in the FO curve formation. As mentioned, the first
eigenfunction appears to have a shifting effect on the FO
curve itself, raising or lowering the overall FO. In contrast,
the second, third and fourth eigenfunctions have an average
effect on the FO curve quite close to 0 over the entire trajec-
tory (as can easily be seen on the plots themselves). There-
fore FPC-2, -3, and -4 do not have an overall shifting effect
on the curve, but rather only dictate properties of the curve’s
shape, essentially bending it.

Finally, it should be pointed out that FPC-4 findings
were rather interesting linguistically in the sense that the
sinusoid-like suggested FO formation does not correspond to
any known/formal individual Mandarin tones. Nevertheless,

Break type Meaning

Break 1 Normal syllable boundary. In written Chinese, this corresponds to one character. (As this is our experimental
data unit, B1 is equivalent to the mean value in the regressions and thus not included separately).

Break 2 Prosodic word boundary. Syllables group together into a word, which may or may not correspond to a lexical word.

Break 3 Prosodic phrase boundary. This break is marked by an audible pause.

Break 4 Breath group boundary. The speaker inhales.

Break 5 Prosodic group boundary. A complete speech paragraph.
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TABLE IV. Covariates examined in relation to FO production in Taiwanese Mandarin. Tone variables in a five-point scale representing tonal characterization,
5 indicating a toneless syllable, with O representing the fact that no rhyme precedes the current one (such as at the sentence start).

Effects Values Meaning Notation mark
Fixed effects

Previous tone 0:5 Tone of previous syllable, 0 no previous tone present Mprevious
Current tone 1:5 Tone of syllable Meyrrent
Following tone 0:5 Tone of following syllable, O no following tone present tpext
Previous consonant 0:3 0 is voiceless, 1 is voiced, 2 not present, 3 sil/short pause Clprevious
Next consonant 0:3 0 is voiceless, 1 is voiced, 2 not present, 3 sil/short pause Clpext
B2 linear Position of the B2 break in sentence B2
B3 linear Position of the B3 break in sentence B3
B4 linear Position of the B4 break in sentence B4
B5 linear Position of the B5 break in sentence BS
Sex 0:1 1 for male, O for female sex
Rhyme type 1:37 Rhyme of syllable rhyme,
Random effects

Speaker N0, 03 uter) Speaker effect spkrID
Sentence N(O, 62, 0nce) Sentence effect sentence

it appears native speakers do indeed exhibit components of
sinusoidal-shape in their production of FO0, as FPC-4
accounts for 19 Hz variation, hence represents an audible
signal. It is likely that this FO curve component is needed to
move between different tones in certain tonal configurations,
as will be discussed below.

Reviewing each model eigenfunction in an individual
manner it is important to stress the main qualitative features
that each model suggests. We must also note that during the
modeling procedure the fixed effects do not incorporate an
intercept as such. Tone 1, the presence of a voiceless next
consonant, the absence of a next or a previous tone and the
vowel_type o (schwa) served as intercepts in the cases of
tones, consonants, next or previous tone and vowel type
covariates, respectively. (For a detailed listing of the relevant
covariates and the jackknifing results please refer to the sup-
plementary material,'® Secs. VI-VIIL) Taking into account
the results from AIC and jackknifing, the following model
for FPC, was chosen:

FP Cl = {[l‘npreviom * tncurrent} + [tn(,'ul'l'eﬂt * tnnext]
+ [Cnprevious * tncurrent:l + [[ncurrent * Cnnext}

+ [cnp,.ﬂ,l-o,” * tnnm}

+ [(B2) + (B2) + (B2)° + (B3) + (B3)?
+(B3)* + (B4) + (B4)’ + (B4)’

+(BS) + (BS)* + (BS)*| + Sex-+[rhyme,]}

+ {[Sentence] + [SpkrID]}y + €. (15)

The first eigenfunction is almost exclusively associated
with the speaker’s FO curve placement. Complex third order
tonal interactions were not present. The speaker-identify ran-
dom effect is significantly high despite the inclusion of
speakers’ sex as a covariate. Thus, this random effect cap-
tures speaker related variance that cannot be accounted for
by indexing the sex of the speaker alone. Tones-2, -3, and -4
register lower in FO than tone 1. Also, a number of rthymes
appear to have significant associations with the first eigen-
function, indicating that a number of rhymes have a charac-
teristic influence or shift on FO (see supplementary
material,16 Sec. XI). These results are all relatively well
known, but it is reassuring to find them all present in the
model.

The type of voicing of the rhyme’s neighboring conso-
nants is of significance for all tone types. Specifically, the
voicing of the preceding consonant resulted in a statistically
significant lower overall FO placement, when compared to the
FO placement associated with a preceding voiceless conso-
nant. Overall, voiced neighboring/initial consonants (includ-
ing epenthetic glottal stop) resulted in lower FO placements,
although the value of the effect depended on the tone type.

Break types B2, B3, and B4 associated both with males
and females are statistically significant emphasizing the role
of speech units larger than the word (but smaller than the
utterance) on the formation of FO. In contrast, BS breaks, in
effect syllable index within the utterance, did not appear sig-
nificant individually in terms of p-values; however, AIC
deemed them worthy of incorporating as a group, yielding a
cubic curve, thus demonstrating that while one covariate

TABLE V. Random effects and 95% highest posterior density confidence intervals for the first, second, third, and fourth FPC scores models as produced by

using 10 000 samples.

FPC1 estimate
(95 lower, 95 upper)

FPC2 estimate
(95 lower, 95 upper)

FPC4 estimate
(95 lower, 95 upper)

FPC3 estimate
(95 lower, 95 upper)

Speaker 71.7510 (37.479, 152.281) 4.6889 (2.333, 22.050)
Sentence 30.8339 (26.875, 31.330) 3.4920 (2.782, 4.037)
Residual 118.9193 (118.306, 119.712) 45.0915 (44.833, 45.380)

6.9769 (3.824, 16.035)
1.9485 (1.637, 2.180)
21.2468 (21.126, 21.382)

3.0921 (1.492, 6.543)
0.5968 (0.350, 0.752)
12.1229 (12.053, 12.196)
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value might exhibit insignificant effects, the group might be
quite important. A more detailed examination of the break
term coefficients reveals more information about the down-
drift effects in the samples. These suggest that, as the
speaker progresses, while FO might exhibit short jumps
because of the generally additive effect of B2, the negative
effects of B3 and B4 start to carry more weight and the
down-drift becomes more prominent forcing the FO estimate
to be lower. Furthermore, the break interactions with
speaker’s sex suggest that, male speakers do not exhibit
B2-related effects to such an extent but due to their B3 and
B4-related interaction their FO track drifts to lower fre-
quency levels more smoothly as the additive lowering effects
of B3 and B4 influences become more prominent. These
types of features are reminiscent of the kinds of features that
can be explored using a Fujisaki approach to the data.
The model for FPC, was chosen as

FPCZ = {[tnprevioux * Meyrrent * tnnext}
+ [cnprevious * Meyrrent * cnnext}
+ [ (B2) + (B2) + (B2)® + (B3) + (B3)?
+(B3)® + (B4) + (B4)® + (34)3} + Sex

+ [(BS) + (BS)+(B5)’] + [rhyme ]}
+ {[Sentence] + [SpkrID]}y + . (16)

The second eigenfunction scores exhibit third order inter-
actions incorporating both triplet types tested, previous_tone:
current_tone: next_tone and previous_consonant: current_-
tone: next_consonant. These kinds of interactions are of im-
portance as they reflect not only physiological but also
linguistic relations in the language corpus. At first glance, only
uncommon triples (such as the tone triple 1-4-3 or 1-3-2 and
the consonant-vowel-consonant triplets where the tones-2 and
-3 occur in-between voiced consonants) appear statistically
significant. Nevertheless, the effects that both third order inter-
actions groups have in the final modeling outcome were found
to enhance the whole model in a statistically significant way
by AIC. It is noteworthy that both the speaker’s identity and
the sentence random effects carry almost equal weighting in
the eigenfunction’s final formation, but their individual
impacts are a whole scale of magnitude smaller than the mod-
el’s residual (see Table V). Thus, while they are not excluded
by the model during our selection procedure, it is clear that
their effect (or rather lack of it) suggests that non-linguistic
covariates play a lesser role in the formation of this FPC. As
expected from the shape of FPC-2, tones 2 and 4 appear signif-
icantly affected by the second eigenfunction, as the slopes of
these two tones are phonological mirror-images. As a conse-
quence, the two have actual parameter values of opposite signs
(=73 and 95 for tones 2 and 4, respectively). Analogous with
the known Mandarin tones, the negative parameter effect in
tone 2 will cause tone 2 curves to have an upward curvature,
while a positive parameter effect in tone 4 will cause down-
wards bending of the syllable’s curve. Fewer rhymes appear to
be associated with FPC-2 and thus with the shaping of its con-
tour. Breaks do come through as significant covariates, despite
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not having significant interactions with the speaker’s sex,
showing that the overall down-drift effect in an utterance is a
sex-independent phenomenon for this FPC. Finally, the voic-
ing nature of the adjacent neighboring consonants proved of
importance both individually and in association with the sylla-
ble’s tone. The influence of a voiced initial consonant was
negative overall, resulting in lowering the start and raising the
end of the FO curve. However, the following consonant’s voic-
ing effect depended mostly on the associated tone.

The scores associated with FPC; had the following
model chosen:

FPC3 = {[tnprevious * Z"’lu,u‘rent} + [tncurrent * tnnwct]
+ [”’lprevious * tnnext}

+ [cnp,.ev,-r,,AY * Meyrrent * cnm;x,}

+ [(B2) + (B2 + (B2) + (B3) + (B3)?

+ (B3)3] « Sex + [rhyme |}

+ {[Sentence| + [Spkr ID]}y + €. (17)

The third eigenfunction possibly plays a dual role.
Firstly, it is most associated with tone 3 in terms of its cova-
riate value, which is unsurprising given its shape. It also
appears to have strong effects on many tonal and voicing
interactions, indicating that it is being used to transition
between syllables. In addition, the speaker’s identity random
effect appears to play a statistically significant role to the
eigencomponent’s final weighting, especially when com-
pared to the sentence effect. FPC-3 appears to carry statisti-
cally significant associations with the majority of different
rhymes considered; suggesting that a hill, valley or a flatten-
ing in the curvature of the rhyme of the vowel is a prominent
feature. Furthermore emphasizing the linguistic and local
relevance of FPC-3, B2 and B3 break types appear to have
the highest association both as individual covariates and in
interaction with sex.

As in the case of FPC2, the voicing nature of the sur-
rounding consonants interacting with the current rhyme tone
influences the final curvature. This effect was most promi-
nent in the cases where the rhyme occurred immediately af-
ter a short pause or another rhyme (i.e., there was no
preceding consonant) and resulted in the curvature exhibit-
ing a clear hill-top tendency. Also noteworthy is that this
eigenfunction appears to have significant interactions when
modeling adjacent pairs of the same tone, its positive influ-
ence easily seen in the cases of tones-2 and -3.

The model for the fourth FPC was chosen as

FPC4 - {[lnprevious * [ncurrent} + [lnnext]
+ [Cnprevious * tncurrent] + [tnL'LH'I'é’n[ * Cnnext}
[Cnprevious * Cnnext]

(B2) + (B2)* + (B2)* + (B3) + (B3)*

rhyme,]} p + {[Sentence]

+

+

n (33)3] « Sex + (B4) + (B4)? + (B4)®

+

+ [SpkrID]}y + €. (18)

[
[
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This fourth eigenfunction, which does not display the
shape characteristics of a single Mandarin tone, shows strong
association with the voicing of the next initial consonant.
This eigenfunction appears to reflect strongly localized
effects mostly associated with the transition from one tonal
segment to another. As expected, specific tones do not ex-
hibit correlation with this eigenfunction, however, the inter-
action between current_tone and next_consonant appears
statistically significant in all cases; suggesting a phonetic
functionality that is associated with linguistic characteristics
of the following syllable. While only a handful of rhymes
appeared to have statistical significance in terms of p-values,
AIC does not exclude them, showing that at least part of the
eigenfunction’s shape is indeed reflected in the rhyme shap-
ing. Another important issue is that breaks 2 and 3 (prosodic
word and phrase) have much influence on the FO contour
through this eigenfunction. B4 (breath group) has a very
small influence, and B5 (paragraph) was not deemed statisti-
cally significant enough to even incorporate. Thus, this
eigenfunction reflects the influence of prosodic units no
larger than the prosodic phrase. It can be suggested that such
a small percentage of FO variance approaches the limit of the
explanatory power of our modeling rationale. Therefore,
fluctuations smaller than this (small) magnitude are due to
articulatory and/or phonetic effects that are beyond the
mostly linguistic covariates the current model entails.

Choosing the relevant covariates from each FPC for the
syllable of interest, summing them up and using this sum as
a factor to weight the influence of each respective eigenfunc-
tion to the original sample mean yields the final FO estimate
(see Figs. 1 and 4). Here the estimates correspond to generic
speakers and to estimations of the behavior of the underlying
Gaussian process. The estimates do not specify individual
speakers; therefore the random effects are set to 0 across all
FPC’s as random effects always have mean 0. As can be
seen, the example tone estimates (Fig. 3) generated by the
model exhibit qualitatively similar characteristics with those
of the YR Chao tone chart.®®

Table VI gives a brief overview of each eigencompo-
nent model’s performance in terms of adjusted R2 with and
without the incorporation of random effects.? It is immedi-
ately seen that the overall adjusted Rﬁ score is declining as
the models try to capture the highly variable nature of each
higher order individual eigencomponent. Nevertheless, in all
cases the inclusion of random effects seems beneficial and
was not rejected by the full sample AIC model comparison
or the jackknifing model selection procedure. While the third
and fourth components’ R? are very low, this likely results
from the inherent variability in the sample data being cap-
tured by these components, beyond the explanatory factors
available to model the data (such as speaker mood through
the experiment, changes in attention, etc.).

Given the break information in the model, it is also pos-
sible to construct the FO track for rhymes over time. As can
be seen in Fig. 5, the curves estimated from the models are
not only fairly good fits to the data on a rhyme by rhyme
basis (with of course the expected estimation error), but the
overall time normalized track from rhyme to rhyme is cap-
tured through the break covariate estimation. (See supple-

J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012

Example Model Tone Estimates

260 T T T T T T T T T
: : : —6— Tone1
. . . =8 Tone2
/ Tone3
2501 : : Tone4| |

240

230

220

Hz

210

200

19*

180:

170 Y ’
0 01 02 03 04 05 06 07 08 09 1

t (normalized)

FIG. 3. Example tone estimates produced by the model utilizing all four
FPC’s. Tone 5 is not represented as it lacks a general estimate, always being
significantly affected by non-standardized down-drift effects. Phonologi-
cally, toneless syllables do not specify a pitch target.

mentary material,'® Table X, for a detailed listing of relevant

covariates.) Thus, in a similar manner to the Fujisaki frame-
work, estimation can be achieved for tracks both associated
with single thyme curves and also longer phrasal (multiple
rhyme) instances.

IV. DISCUSSION

Overall, the presented methodology allows for an analy-
sis of the linguistic corpus at hand. Specifically, the qualita-
tive analysis of the eigenfunctions suggests the strong

TABLE VI. Adjusted R? scores for the selected linear models before and af-
ter the inclusion of speaker and sentence related random effects.

FPC No. LM —R? LME — R?
FPC1 0.6271 0.7056
FPC2 0.6109 0.6161
FPC3 0.3645 0.4136
FPC4 0.1083 0.1491
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FIG. 4. One randomly selected syllable for each of the five tones; the functional estimates (bold) for each different tone are shown as well as the correspond-
ing original speaker interpolated data over a dimensionless rthyme time interval 7. [Estimated vowel rhymes: [uei, op, a1, uan, 9] for each of the five tones,
respectively. See supplementary material (Ref. 16) for contextual covariate information.]

dependence of pitch level to the speaker’s identity. The
influence of triplets in the case of tones 2 and 4 and the sub-
sequent slopelike shape they exhibit is also demonstrated in
the case of tone 2 where FO initially drops before the rise,
the effect being most prominent when tone 2 is spoken after
either a tone 1 or tone 2. The model also suggests that statis-
tically significant differences are present on the down-drift
effect between speakers of different gender. Nevertheless,
excepting FPC1 (the curve’s FO placement component), all
the other FPC’s did not show significant associations with
the speakers’ sex, suggesting that males and females have
the same generic tone shapes; the actual shaping is statisti-
cally gender-independent. Furthermore, the fact that a num-
ber of rhymes have specific shaping attributes that are
concurrently speaker and sentence independent is also put
forward. The model proposes that the presence of voiced
consonants adjunct to a rhyme alters its curvature to a note-

Speaker-specific FO track reconstruction
260

worthy level; thus it is essentially validating empirically the
sequential target approximation assumption used by Promon
et al. in the qTA model.® Additionally, an interesting, yet
not surprising, result is that as the modeling procedure
focuses on higher order FPC’s, higher order breaks (namely,
B4 and B5) seem to carry decreasing importance to the final
model. This result is in line with the fact that higher order
FPC’s reflect more localized effects influenced by changes
in B2 and B3 indexing. The model estimates (Fig. 4) show
that the proposed model succeeds in capturing the overall
dynamics of the speaker’s pronunciation, giving good quali-
tative and quantitative estimates. (Tone 1: sentence 564,
word 2; tone 2: sentence 124, word 1; tone 3: sentence 336,
word 1; tone 4: sentence 444, word 4; tone 5: sentence 529,
word 3. See supplementary material,'® Table IX, for a
detailed listing of relevant covariates.) This success is
obtained despite the fact that the sample exhibits large
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di2 sit nai4 le4

160
™

e orara Forant FIG. 5. Randomly chosen FO trajec-
tory over (normalized) time. Here

I six concurrent FO tracks for rhymes
i are shown for speaker FO3. As can
be seen, the match is fairly close for
T most syllables, with the estimates
associated with the break informa-
tion controlling the temporal down
| drift effects [Tonal sequence: 2-1-4-
4-2-5; estimated vowel rhymes: [i, 1,
ai, 9, yen, 9]. See supplementary ma-
terial (Ref. 16) for contextual covari-
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variance and possible distortion through its measurements
even after the initial data were preprocessed. Note that Shih
and Kochanski® ran into similar issues concerning distorted
tone shapes. Collectively, these findings are in line with
those of other studies,” specifically when reviewing the
effect of adjacent tones. Durational differences are not taken
into account by the current modeling approach. Possible
future work would benefit from incorporating time-warping
normalization on the rhyme time in order to ensure that pos-
sible discrepancies due to durational differences are
excluded.

The current findings are also analogous to those of
Aston et al.'® in their study on Luobuzhai Qiang, a tonal
Sino-Tibetan language of Sichuan Province in central-
southern China. It could be of interest to review and compare
these findings with those of other languages, especially those
that are genealogically and geographically distant, to high-
light any differences found in the components recovered
from the FO trajectory.

Each of the FPC, models constructed are unit but not scale
invariant; alternative models could be postulated for semitones
or bark scale following the same methodology.

Indeed the analysis was repeated using a semitone scale
but the contours recovered were almost identical. Other
effects, such as the text frequency of the syllable were not
incorporated as model covariates. While it could be argued
that this would upgrade the overall performance of the
model, this would nevertheless steer the model away from
its phonological foundations. Therefore, inclusion of such
factors as text frequency, duration, intonation pattern, etc.,
remains for future research. Moreover, because of the time-
normalization, observed curvature fluctuations are per sylla-
ble rather than on an absolute time scale. To test our methods
against a parametric family of basis functions which has pre-
viously been suggested (Ref. 9), the full body of the analysis
was reimplemented using Legendre polynomials, shifted and
normalized in L, [0, 1] as a set of basis functions for the data
instead of FPC’s. This representation gave very similar ex-
planatory results, because of Legendre polynomials having
similar shape to the FPC’s. However, as discussed in the
Introduction, Legendre polynomials do not represent an opti-
mal basis in terms of most variation of the data explained
(see supplementary material,'® Sec. IV) and thus the first
four Legendre polynomials explain a smaller amount of the
data’s variation than the amount of variation explained by
the first four eigenfunctions.

The model’s novelty is that while the syllable curve was
assumed to be part of the whole utterance as in the Fujisaki
approach, the syllable curve itself was treated as a continu-
ous random process modeled by different FPCs. In addition,
micro-prosodic phenomena also known to be present are not
systematically excluded by the current framework. In that
sense, statistical methodology is the mechanism excluding
irrelevant or immeasurable components of the sample. As
the FPC’s are orthogonal to each other, FPC scores account
for non-overlapping variations. Higher degrees of FPC’s
might reflect further micro-prosodic variations than the ones
recognized by this study, but as the total amount of informa-
tion in these FPC’s is considered below an auditory thresh-
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old, these FPC’s are rendered unnecessary to the actual
modeling procedure.

The future goals of this project are three-fold. First, by
using the model, it may be possible to make meaningful infer-
ence from other corpora allowing more realistic speech recog-
nition and speech processing. Secondly, by taking advantage
of the surrogate variables generated (FPC’s, covariance surfa-
ces, etc.), possibilities arise to infer associations between lan-
guages that share common phonological characteristics, under
a functional phylogenetic framework. Such framework has
already been sketched by Aston e al.** Third, by validating
this method on a language where many of the effects on FO
are known, it now becomes possible to investigate numerous
effects and their interactions in the production of FO in less-
studied languages, and to be confident of the results.

ACKNOWLEDGMENTS

J.LALD.A. gratefully acknowledges EPSRC (UK) Grant
No. EP/H046224/1 as well as the EPSRC/HEFCE CRiSM
grant. J.P.E. gratefully acknowledges NSC Grant No. 97-
2410-H-001-067-MY3 from the National Science Council
(Taiwan).

M. Schroeder, T. D. Rossing, F. Dunn, W. M. Hartmann, D. M. Campbell,
and N. H. Fletcher, Springer Handbook of Acoustics, 1st ed. (Springer,
Berlin, 2007), Chaps. 13 and 16.

°F. Nolan, “Acoustic phonetics—International encyclopedia of linguistics,
William J. Frawley,” (2003), URL http://www.oxford-linguistics.com/
entry?entry=t202.e0008 (e-reference edition, date last viewed 2/2/11).
3S.-A. Jun, Prosodic Typology: The Phonology of Intonation and Phrasing
(Oxford University Press, Oxford, UK, 2006), Chap. 2.

“A. W. Black and A. Hunt, “Generating fO contours from tobi labels using
linear regression,” in /CSLP (1996).

Y. Xu, “Effects of tone and focus on the formation and alignment of fO
contours,” J. Phonetics 27, 55-105 (1999).
°C. E. Rasmussen, Gaussian Processes for Machine Learning (MIT Press,
Cambridge, 2006), Chaps. 1 and 2.

"M. Seeger, “Gaussian processes for machine learning,” Int. J. Neural Syst.
14, 2004 (2004).
8J. Ramsay and B. Silverman, Applied Functional Data Analysis: Methods
and Case Studies (Springer Verlag, New York, 2002), Chap. 1.
°E. Grabe, G. Kochanski, and J. Coleman, “Connecting intonation labels to
mathematical descriptions of fundamental frequency,” Lang. Speech 50,
281-310 (2007).

1D, Hirst and R. Espesser, “Automatic modelling of fundamental frequency
using a quadratic sline function,” Trav. Inst. Phonét. Aix 15, 71-85
(1993).

"J. Ramsay and B. Silverman, Functional Data Analysis (Springer Verlag,
New York, 1997), Chap. 6.

125, Rangachari and P. Loizou, “A noise-estimation algorithm for highly
non-stationary environments,” Speech Commun. 48, 220-231 (2006).

3M. Grimm, K. Kroschel, E. Mower, and S. Narayanan, “Primitives-based
evaluation and estimation of emotions in speech,” Speech Commun. 49,
787-800 (2007).

R, Baayen, D. Davidson, and D. Bates, “Mixed-effects modeling with
crossed random effects for subjects and items,” J. Memory Lang. 59,
390-412 (2008).

15J. Aston, J. Chiou, and J. Evans, “Linguistic pitch analysis using func-
tional principal component mixed effect models,” J. R. Stat. Soc., Ser. C,
Appl. Stat. 59, 297-317 (2010).

1See supplementary material at http://dx.doi.org/10.1121/1.4714345 for
additional information concerning the analysis in this paper.

'H. Fujisaki, “Information, prosody, and modeling-with emphasis on tonal
features of speech,” in Speech Prosody 2004, International Conference
(ISCA) (2004).

'®H. Mixdorff, H. Fujisaki, G. P. Chen, and Y. Hu, “Towards the automatic
extraction of Fujisaki model parameters for Mandarin,” in Eighth

Hadjipantelis et al.: Characterizing FO in Mandarin 4663



European Conference on Speech Communication and Technology (ISCA)
(2003).

19H. Mixdorff, “A novel approach to the fully automatic extraction of Fuji-
saki model parameters,” in Acoustics, Speech, and Signal Processing,
2000. ICASSP’00. Proceedings. 2000 IEEE International Conference
(2000), Vol. 3, pp. 1281-1284.

295, Louw and E. Barnard, “Automatic intonation modeling with INTSINT,”
Proceedings of the Pattern Recognition Association of South Africa
(2004), pp. 107-111.

2'D. Hirst, “A Praat plugin for Momel and INTSINT with improved algo-
rithms for modelling and coding intonation,” in Proceedings of the XVIth
International Conference of Phonetic Sciences (2007), pp. 1233-1236.

22p, Taylor, “Analysis and synthesis of intonation using the tilt model,” J.
Acoust. Soc. Am. 107, 1697-1714 (2000).

23S, Prom-on, Y. Xu, and B. Thipakorn, “Quantitative target approximation
model: Simulating underlying mechanisms of tones and intonations,” in
Acoustics, Speech and Signal Processing, 2006, ICASSP 2006 Proceed-
ings, 2006 IEEE International Conference (2006), Vol. 1.

247, Evans, M. Chu, J. Aston, and C. Su, “Linguistic and human effects on
FO in a tonal dialect of Qiang,” Phonetica 67, 82-99 (2010).

237, Faraway, Extending the Linear Model with R: Generalized Linear,
Mixed Effects and Nonparametric Regression Models (CRC Press, Boca
Raton, FL, 2006), Chaps. 1, 8, 10.

265, 0. Ramsay, K. G. Munhall, V. L. Gracco, and D. J. Ostry, “Functional
data analyses of lip motion,” J. Acoust. Soc. Am. 6, 3718-3727 (1996).

?7J. Lucero and A. Lofqvist, “Measures of articulatory variability in VCV
sequences,” Acoust. Res. Lett. Online 6, 80 (2005).

28, Lee, D. Byrd, and J. Krivokapic, “Functional data analysis of prosodic
effects on articulatory timing,” J. Acoust. Soc. Am. 119, 1666-1671
(2006).

2D. Byrd, S. Lee, and R. Campos-Astorkiza, “Phrase boundary effects on
the temporal kinematics of sequential tongue tip consonants,” J. Acoust.
Soc. Am. 123, 4456-4465 (2008).

0L L. Koening, J. C. Lucero, and E. Perlman, “Speech production variabili-
ty in fricatives of children and adults: results of functional data analysis,”
J. Acoust. Soc. Am. 5, 3158-3170 (2008).

3IM. T. Jackson and R. S. McGowan, “Predicting midsagittal pharyngeal
dimensions from measures of anterior tongue position in swedish vowels:
Statistical considerations,” J. Acoust. Soc. Am. 123, 336-346 (2008).

32K Reilly and C. Moore, “Respiratory movement patterns during vocaliza-
tions at 7 and 11 months of age,” J. Speech Lang. Hear. Res. 52, 223-239
(2009).

337, Ni, R. Wang, and D. Xia, “A functional model for generation of local
components of FO contours in Chinese,” in Spoken Language, 1996.
ICSLP 96. Proceedings, Fourth International Conference (IEEE) (2002),
Vol. 3, 1644-1647.

C. Tseng, Y. Cheng, and C. Chang, “Sinica COSPRO and toolkit: Corpora
and platform of Mandarin Chinese fluent speech,” in Proceedings of Ori-
ental COCOSDA (2005), pp. 6-8.

3¢, Tseng, S. Pin, Y. Lee, H. Wang, and Y. Chen, “Fluent speech prosody:
Framework and modeling,” Speech Commun. 46, 284-309 (2005).

3X. He and L. Deng, “Speech recognition, machine translation, and speech
translation; a unified discriminative learning paradigm [lecture notes],”
Sign. Process. Mag., IEEE 28, 126-133 (2011).

¥C. Tseng, Y. Cheng, and C. Chang, “Sinica COSPRO and toolkit—Cor-
pora and platform of Mandarin Chinese fluent speech,” in Oriental
COCOSDA 2005, Jakarata, Indonesia (2005).

B, Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory
and Practice (Springer Verlag, New York, 2006), Chaps. 1 and 4.

397, Chiou, H. Miiller, and J. Wang, “Functional quasi-likelihood regression
models with smooth random effects,” J. R. Stat. Soc.: Ser. B (Stat. Meth-
odol.) 65, 405-423 (2003).

4664  J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012

0], Mercer, “Functions of positive and negative type, and their connection
with the theory of integral equations,” Philos. Trans. R. Soc. London, Ser.
A 209, 415-446 (1909).

4IE. Yao, H. Miiller, and J. Wang, “Functional data analysis for sparse longi-
tudinal data,” J. Am. Stat. Assoc. 100, 577-590 (2005).

42p_ Castro, W. Lawton, and E. Sylvestre, “Principal modes of variation for
processes with continuous sample curves,” Technometrics 28, 329-337
(1986).

43p_ Hall, H. Miiller, and J. Wang, “Properties of principal component meth-
ods for functional and longitudinal data analysis,” Ann. Stat. 34,
1493-1517 (2006).

47, Rice and B. Silverman, “Estimating the mean and covariance structure
nonparametrically when the data are curves,” J. R. Stat. Soc., Ser. B
(Methodol.) 53, 233-243 (1991).

“5p. Buser and M. Imbert, Audition, 1st ed. (MIT Press, Cambridge, 1992),
Chap. 2.

46g. Sudhoff, Methods in Empirical Prosody Research (Walter De Gruyter,
Berlin, 2006), Chap. 4.

47J. Pinheiro and D. Bates, Mixed-Effects Models in S and S-PLUS (Springer
Verlag, New York, 2009), Chap. 2.

4B, West, K. Welch, and A. Galecki, Linear Mixed Models: A Practical
Guide using Statistical Software (CRC Press, Boca Raton, FL, 2007),
Chaps. 2 and 6.

“9r < nin usual cases.

S0A. Davison, Statistical Models (Cambridge University Press, Cambridge,
2003), Chap. 4.

51G. Fitzmaurice, N. Laird, and J. Ware, Applied Longitudinal Analysis
(Wiley-Interscience, New York, 2004), Chap. 7.

52M. Galassi, J. Theiler, J. Davies, and B. Gough, GNU Scientific Library
Reference Manual, 3rd ed. (Network Theory Limited, Bristol, UK, 2009).

PMATLAB, version 7.10.0 (R2010a) (MathWorks, Natick, MA, 2010).

MR Development Core Team, R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria
(2011), http://www. R-project.org (date last viewed 2/11/11).

3D. Bates and M. Maechler, Lve4: Linear mixed-effects models using S4
classes (2011), http://CRAN.R-project.org/package=lme4, r package ver-
sion 0.999375-41 (date last viewed 2/11/11).

6R. H. Baayen, Language r: Data sets and functions with “Analyzing Lin-
guistic Data: A practical introduction to statistics” (2011), http://CRAN.
R-project.org/ package=languageR, r package version 1.2 (date last
viewed 2/11/11).

S7R. Baayen, Analyzing Linguistic Data: A Practical Introduction to Statistics
using R (Cambridge University Press, Cambridge, UK, 2008), Chap. 4.

58C. yu Tseng and F. Chiang Chou, “Machine readable phonetic transcrip-
tion system for Chinese dialects spoken in Taiwan,” J. Acoust. Soc. Jpn.
20, 215-223 (1999).

39R. C. Torgerson, “A comparison of Beijing and Taiwan Mandarin tone
register: An acoustic analysis of three native speech styles,” Master’s the-
sis, Brigham Young University, 2005.

SOY -H. Lin, The Sounds of Chinese (Cambridge University Press, Cam-
bridge, 2007).

S'M. L. Borroff, “A landmark underspecification account of the patterning
of glottal stop,” Ph.D. thesis, Department of Linguistics, Stony Brook Uni-
versity, New York, 2007.

%2Y. R. Chao, A Grammar of Spoken Chinese (University of California
Press, Berkeley, 1968).

%3C. Shih and G. Kochanski, “Chinese tone modeling with stem-ml,” in
ICSLP (2000), pp. 67-70.

%The Functional Phylogenetic Group, J. A. D. Aston, D. Buck, J. Coleman,
C. J. Cotter, N. S. Jones, V. Macaulay, N. MacLeod, J. M. Moriarty, and
A. Nevins, “Phylogenetic inference for function-valued traits: Speech
sound evolution,” Trends Ecol. Evol. 27, 160-166 (2012).

Hadjipantelis et al.: Characterizing FO in Mandarin



	s1
	s1A
	cor1
	s1B
	s2
	s2A
	E1
	E2
	E3
	E4
	E5
	E6
	E7
	E8
	s2B
	E9
	E10
	E11
	E12
	E13
	s3
	F1
	E14
	T1
	T2
	F2
	T3
	E15
	T5
	T4
	E16
	E17
	E18
	s4
	F3
	T6
	F4
	F5
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60
	B61
	B62
	B63
	B64

