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Probability and frequency are becoming increasingly important in
phonological analysis. This article reviews contemporary perspectives on
how phonological theory addresses gradient phonological patterns shaped
by probability and frequency, drawing on theories of the lexicon, grammar,
and statistics. After examining their motivations, we show how these diverse
theoretical perspectives have been applied to a variety of problems in core
phonology, including phonotactics, morphophonology, sound change,
phonological categorization, and language development. Our review of
theory and applications supports a growing consensus in the field that
phonological theories must reckon with probability. Our review also
identifies problems stemming from a lack of cohesion in the field, and
suggests potential solutions to these problems.
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Introduction

Throughout much of its history, generative phonology has been focused on
explaining categorically-defined phenomena using a binary classification of
phonological form (i.e. grammatical vs. ungrammatical). While early work on the
scope of generative grammar did entertain degrees of grammaticality (Chomsky
1961; Chomsky & Miller 1963; Katz 1964), and quantified phonological variation
in non-categorical terms (Labov 1969), it is fair to say that the challenge for most
phonologists has been to account for the distinction between grammatical and
ungrammatical forms. Marginal or graded phenomena that fall between the two
extremes have tended to be addressed through the distinction between compe-
tence and performance (Chomsky 1957, 1965; Chomsky & Halle 1968). In this
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view, phonological patterning on the margins is part of performance, and so it is
not part of phonological analysis and can be disregarded as “noise”.

However, over the last several decades, the field has shown a sizable shift of
focus from the categorical to the gradient, and this shift is clearly evident in gener-
ative phonology. It has become increasingly clear that many gradient phenomena
cannot be relegated to performance, and are indeed a part of linguistic compe-
tence (for review, see Ernestus (2011), Shaw & Kawahara (2018), Pierrehumbert
(2022). To take a prominent and historically important example, dissimilatory co-
occurrence constraints (as in OCP place constraints in Arabic) require reference
to probabilistically-determined conditioning factors, such as locality, target fea-
tures, and featural combinations (Pierrehumbert 1993; Frisch et al. 2004; Coetzee
& Pater 2008; Hayes & Wilson 2008). Gradient phonotactic constraints such
as these are reflected in native speaker judgments of both known words and
nonsense words (Frisch et al. 2000; Bailey & Hahn 2001; Frisch & Zawaydeh
2001; Myers & Tsay 2005; Daland etal. 2011), and are therefore likely to be
a part of the speaker’s grammatical knowledge, rather than artifacts of histori-
cal residue or random variation. These developments in assessing phonological
well-formedness mirror similar ones in syntactic analysis (Keller 2000; Sorace &
Keller 2005), suggesting that linguistic competence includes gradient representa-
tions across a variety of domains.

Furthermore, a growing number of studies have shown that the application
of phonological processes is correlated with a host of gradient phonological struc-
tures that are missed under a categorical approach to well-formedness. Phono-
logical processes are influenced by lexical statistics (Ernestus & Baayen 2003;
Hayes & Londe 2006; Zuraw 2007), social factors (Labov 1969; Cedergren &
Sankoft 1974), and information-carrying capacity (Cohen Priva 2015; Hall et al.
2018; Shaw & Kawahara 2018), in addition to a range of phonological structures
and contexts. In sum, a phonological system cannot be accurately characterized
with a generative model that is restricted to categorical outcomes. Rather, non-
categorical outcomes must also be entertained to describe the full range of phono-
logical behavior.

The need to characterize phonology in terms of the gradient and the proba-
bilistic has led to a number of innovations in theoretical models. This growth in
approaches to probability in phonology suggests a growing consensus that phono-
logical grammars must assign a role for frequency and probability. This role has
been formalized in almost every known analytical framework, including modi-
fications to traditional generative models (e.g. Labov 1969), psycho-linguistically
inspired models like exemplar theory (Pierrehumbert 2003b; Wedel 2006), and
analogical models of phonology (Bybee 2001). In addition, mathematically-
informed models such as information theoretic (Hume 2008; Hall 2009; Cohen
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Priva 2012), connectionist (Hare 1992; Alderete & Tupper 2018), and constraint-
based models of phonology (Zuraw 2000; Goldwater & Johnson 2003; Hayes &
Wilson 2008) have also been developed. Though there is considerable diversity
in theoretical approaches, there exists an over-arching notion of probabilistic
phonology that unifies these different perspectives. Empirically, probabilistic
phonology involves embracing probability distributions for describing phonolog-
ical structures and processes, above and beyond simple binary characterizations
of grammaticality. Theoretically, we can say that probabilistic phonology is an
enterprise that directly employs probability distributions in a phonological analy-
sis, or assigns a role to a continuous measure that correlates with probabilities.

This article provides a brief background on probability theory that serves as
the backbone to these theories (§ 2), as well as an overview of these theoretical
perspectives (§ 3) and their applications in phonological analysis (§ 4). This arti-
cle is not intended to be a detailed argument for any particular theoretical posi-
tion, or as an argument that a specific phonological domain requires reference to
probabilities (though we do review distinct perspectives and illustrate differences
among them). We also do not intend to give complete reviews of particular the-
oretical models. The reader is invited to review the detailed arguments given in
the works cited in this paper, including several articles that focus on specific theo-
ries: Shaw & Kawahara (2018) on information theoretic phonology, Wedel (2006)
and Ernestus & Baayen (2011) on exemplar models, Alderete & Tupper (2018) on
connectionist phonology, Daland (2014) and Chandlee & Heinz (2017) on com-
putational phonology, and Coetzee & Pater (2011) on Harmonic Grammar and
variation.

Because progress has been made in understanding the role of probability in
phonology from so many diverse perspectives, it can be a challenge to understand
how each approach fits in to the larger goal, and how to compare approaches
that may appear divergent, despite similar goals. This paper works to fill this
gap. Our principal goal here is to try to develop a broader perspective and expli-
cate a shared commitment to grapple with gradient patterns that spans across a
range of frameworks. The theoretical perspectives we review, though they share a
commitment to probability theory, differ considerably in underlying assumptions
and the specific methods they employ. With these differences, come problems in
contrasting and comparing accounts of the same phenomena, and these difficul-
ties lead to a kind of insularity across models that unfortunately prevents cross-
communication of ideas. The second contribution of this article is to lay out some
of these problems in comparative analysis and also foreground some productive
strategies for finding common ground within probabilistic phonology (§ 5).
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2. Background

2.1 Gradience, frequency, and probability

It is fairly common for phonological patterns to be described as ‘gradient’ in the
sense that the correct analysis of a phonological pattern requires reference to non-
integer numbers. In variable phonology (see (a) in Table), for example, we can
speak of a 0.7 probability of rule application, rather than categorically applying
100% or 0% of the time (with probabilities 1 or 0). Likewise, incomplete neu-
tralization and related phenomena ((b) in Table) are sometimes described as gra-
dient in a similar sense because they result in fine-grained phonetic structures
that require continuous variables. For example, in the neutralization case, vowel
durations can be increased by 10% (or the duration can be scaled by 1.1) before
devoiced obstruents that are underlyingly voiced (Dinnsen & Charles-Luce 1984).

While such uses of the term gradient are fairly common, we are also con-
cerned with a more literal sense of this term in which sub-classes of a phono-
logical pattern fall on a gradient. In this sense, familiar from linear regression,
values on a continuous dimension are correlated with other measures and the cor-
relation line may have a slope. For example, phonological forms exhibit gradi-
ent acceptability on a well-formedness scale, and the values of forms on this scale
have been shown to be correlated with predictor variables, which are themselves
continuous ((c) in Table 1). To illustrate, Hayes & Wilson (2008) show that chil-
dren’s rating data for nonce onset clusters are positively correlated with MaxEnt
values (i.e. transformations of harmony values, or weighted sums of constraint
violations). Phonological classes falling on a gradient have also been used to
account for phonological classes that emerge from lexical statistics ((d) in Table 1)
and phonological grades in allomorphy ((e) in Table 1).

Table 1. Empirical overview

a. Variable phonological processes: Processes that do not apply categorically, but instead
whose likelihood of application is conditioned by a range of factors (e.g. structure
description, social factors, speech rate). Example: in Panamanian Spanish, the likelihood of
spirantization of the syllable-final alveolar flap is conditioned by word position, morpheme
class, segment natural class, and socio-economic status (Cedergren 1973; Cedergren &
Sankoff 1974).

b. Incomplete neutralization: Fine-grained phonetic structure of the output of a phonological
process that is unexpected given its phonological categorization. Example: small but
statistically significant differences between lexical and derived voiceless obstruents (for

review, see Warner et al. (2004)).
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Table 1. (continued)

c. Gradient acceptability of word forms: Rating of grammatical well-formedness, correlated
with a continuous dimension. Example: the acceptability of unattested English onsets (e.g.
vz, ml, fr) is strongly correlated with the MaxEnt values representing the combined impact of

weighted constraints on licit onsets (Hayes & Wilson 2008).

d. Gradient patterns in lexical statistics: Phonological patterns that fall on a scale in how well
they are represented in the lexicon. Example: the frequency of consonant pairings in the
same root is scaled by the similarity of the two consonants in Arabic, as in, s-f < s-t < s-I
(Frisch et al. 2004).

e. Graded morpho-phonology: Allomorphy in which related forms fall into grades. Example:
allomorphs for the English past tense have grades between strongly irregular (sing/sung),
regular (walk/walked), and intermediate categories with the regular form (feel/felt, cut) that
children overgeneralize (Bybee & McClelland 2005).

How does phonological theory reckon with probabilities other than 0 and 1, and
how does it predict these gradients? In some models, probability and frequency
are used to predict phonological behavior. In information-theoretical phonol-
ogy, for example, a number of predictor variables derive from contextual prob-
abilities, and so probability is encoded directly in the analysis, as in the use of
informativity in Cohen Priva (2015). Other theories do not use probability or fre-
quency directly, but instead use theoretical constructs that approximate proba-
bilities or track frequencies. In MaxEnt Grammar, for example, well-formedness
constraints are assigned weights that maximize the probability of an observed
form, and these weights are generally arrived at through learning systems working
with large data sets (Hayes & Wilson 2008). The weights themselves are not prob-
abilities, or frequencies, but they have the effect of maximizing the probability of
attested forms when couched within grammar. As we shall see, the use of weights
that are interpreted as probabilities, or correlated with them, is quite common in
constraint-based models, connectionist phonology, and exemplar phonology, per-
haps because of the ubiquity of the use of weights in mainstream connectionist
psycholinguistic models (Goldrick 2007).

2.2 Synopsis of probability theory

We give a brief synopsis of probability theory in order to explain how concepts
from this theory are employed by the theories discussed below, but see Bod (2003)
and Frisch (2012) for more detailed introductions to probability and frequency in
linguistics.
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Table 2. Definitions

a.  Probability of A in sample space Q =#A/#Q, if all outcomes equally likely
b.  Joint probability P(A, B)=P(A) x P(B), if A, B independent

c.  Conditional probability P(B|A) = P(A, B)/P(A), if P(A) # 0

d.  Joint probability P(A, B)=P(A) x P(B|A), if A, B dependent

e.  Transitional probability P(A-~B) =#AB/#A

f.  Contextual predictability P(x|Context) = #x in Context/#Context

g Surprisal of x in Context=-log, P(x|Context)

h.  Entropy of Context=-%_P(x|Context) log, P(x|Context)

i.  Informativity of x=-}_P(Context|x) log, P(x|Context)

j.  Bayes theorem: P(A|B)=[P(B|A) x P(A)] / P(B)

Probabilities can be viewed either as facts about the world that are calculated
from the outcomes of experiments (frequentist interpretation) or as degrees of
belief by an observer (objectivist or Bayesian interpretation). In both interpreta-
tions, probabilities are numbers between 0 and 1, where 0 indicates impossibil-
ity and 1 certainty. For example, a fair coin will have a probability 0.5 of landing
Heads. Because most of the methods reviewed in this paper are based in frequen-
tist assumptions, except where explicitly noted otherwise, the examples in this
section also take a frequentist approach.

On this view, we calculate probabilities with experiments that produce
observable outcomes. The collection of outcomes resulting from an experiment is
called the sample space Q, and any subset of Q) is an event. If all possible outcomes
of an experiment are equally likely, then we can say that the probability of an event
A, or P(A), is a ratio of the size of A and the size of Q (see Table for formulas). For
example, suppose we have a corpus of 100 words in which 90 words begin with
a consonant and the rest begin with a vowel. We can devise an experiment that
selects a word from this corpus at random. What is the probability that a word
will begin with a consonant on a trial of this experiment? The sample space is
the entire 100 word corpus, and the event we are interested in is the subset of 90
words that begin with a consonant, so P(W¢, o nane) =90/100=0.9.

The probability of a linguistic structure is often estimated with frequency
within a corpus (token frequency) or a dictionary/lexicon (type/lexical fre-
quency). To illustrate the difference, the phonemes [v] and [0] have relatively high
token frequencies in English because they occur in many high frequency items,
like the and of. However, these sounds have much lower type frequency because
they are used in only a small number of words. That is, there are relatively few
words other than the and of. Thus, the probability of hearing a given consonant
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depends on the way words and segments are counted, as well as the specific fre-
quency distribution of the segments, as probability distributions over segments
are not evenly distributed (Daland 2013).

Much of the interest in using probability distributions to study phonology
comes from studying combinations of structures and structures in context. In
an experiment where two structures A and B are sampled independently, and
the selection of one does not affect the other, the chance of observing A and B
together, referred to as the joint probability of A and B, is simply the product of
P(A) and P(B). However, in many phonological studies, we may wish to investi-
gate two distinct outcomes that are not independent. To calculate joint probability
in such a scenario, we require another term, conditional probability P(B|A), or the
probability of B given A. The general definition for P(B|A), is P(A, B) over P(A),
though P(B|A) can also be estimated from the data itself. The joint probability of
A and B (i.e. P(A, B), when A and B are dependent), is the product of P(A) and
P(B|A).

To make these terms concrete, consider again a hypothetical corpus of 100
CV words in which 60 begin with an obstruent and 50 contain front vowels. We
can devise an experiment that samples consonants from the words of this corpus
at random, and samples vowels from different random words, and then replaces
the words back to the corpus after sampling from it. In such an experiment, the
sampling of consonants and vowels are independent, and so the joint probabil-
ity of sampling an obstruent and a front vowel is simply P(C ;) X P(Vion)»
or 0.6x0.5=0.3. Suppose, however, we devise a different experiment that also
selects words from the corpus at random, but first samples the consonant, then
the vowel, of the same word. In such an experiment, the two outcomes are not
independent, and so we need to know the conditional probability of obstruents
given front vowels in order to calculate their joint probability. It turns out that on
closer inspection obstruents are associated with front vowels because they occur
in 45 of 50 words that have front vowels in the corpus. From these facts, we know
the conditional probability of an obstruent occurring given a front vowel to be 45/
50=0.9. The joint probability of an obstruent occurring with front vowels in this
experiment is thus the probability of obstruents (60/100=0.6) times the probabil-
ity of an obstruent occurring given a front vowel, P(C_p,|Vone) =0-9- Thus, the
jOint prObability P(Cobstr’ Vfront) is P(Cobstr) x P(Cobstrlvfront) =0.6 x 0.9=0.54.

There are other ways in which context can be formalized in probabilistic
phonology. One common approach is with transitional probability, the probabil-
ity of a transition from structures A to B. Transitional probability is calculated
as the frequency of the bigram AB over the frequency of 4, and is often used in
accounts of speech segmentation and finite-state accounts of phonology (Heinz
2010). Transitional probabilities have also been used in discussions of speech seg-
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mentation (Brent & Cartwright 1996; Saffran et al. 1996), where the transitional
probability is higher within a word than at a word boundary. In the phrase pretty
baby, the probability that [pri] comes before [ti] is higher than the probability
that [ti] comes before [be1], because pretty is a word, and [ti]-[ber] is a transition
between words (Saffran 2003).

Another way in which context can be incorporated probabilistically is
through formalisms from information theory (Shannon & Weaver 1949). Infor-
mation theory provides a set of measures for quantifying the information carrying
potential of a message (see Cohen Priva (2015) and Shaw & Kawahara (2018) for
review). An important concept in this theory is surprisal, which can be thought
of as the number of bits of information a structure x holds if no other information
aside from the context is known. Surprisal is calculated by taking the negative log
of the contextual predictability of some structure x relative to a specified Con-
text, P(x|Context). Other information theoretic measures are entropy, the aver-
age predictability of structure in a given context, and informativity, a measure of
the amount of information a structure usually has in the language as a whole (see
Table 2 for formulas). Entropy and informativity thus build on surprisal to give
more general characterizations of the information-carrying capacity of linguistic
structure.

While the above discussions focused on frequentist assumptions, many appli-
cations of conditional probabilities in both frequentist and Bayesian approaches
make use of Bayes’ rule. Suppose, for example, an observer hears a CV syllable
from the corpus described above, but is only able to make out that the consonant
is an obstruent, and would like to make an inference about the quality of the vowel
(i.e. front versus back). Using the known information about the corpus, an infer-
ence about the probability of a front vowel given an obstruent, P(Vg . .|C i)
can be obtained. According to Bayes’ rule, an unknown conditional probability
P(VontlCopstr) (referred to as the posterior) is equal to the known conditional
P(Cypstel Viront) (referred to as the likelihood) multiplied by the individual prob-
ability of the hypothesis P(Vy,,,,) (referred to as the prior), divided by the evi-
dence (or marginal likelihood), P(C,). Using the formula (j) in Table 2,
P(Vio0tl Cobstr) = [P(Copstr Viront) X P(Virone)] / P(Copsr) =[0.9%0.5] / 0.6=0.75.

In many of the examples discussed here, probability is calculated based on
a finite set of forms, based on a corpus or results from a behavioral experiment.
However, an important goal of generative phonology is to predict which forms are
possible given a grammar, and not simply the existing words. Consistent with the
latter goal, generative frameworks sometimes produce an infinite set of possible

obstr

words from a finite set of constraints, rules, or representations. Defining a prob-
ability distribution over an infinite set may be a challenge for probabilistic mod-
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els of generative phonology. Daland (2015) shows that while MaxEnt models of
Harmonic Grammar (Hayes & Wilson 2008) appear to be especially prone to this
issue, a straightforward solution is to incorporate constraints against excess struc-
ture (*Structure constraints) into the model. Other work in Optimality Theory
(OT) has shown that while OT produces an infinite candidate set, there is gen-
erally only a finite set of possible winning candidates (contenders), thus reducing
the probability space (Eisner 2002; Riggle 2004). While the problem of infinite
sets has been discussed to some degree for OT and Harmonic Grammar, particu-
larly in terms of the candidate set, it is not clear that this issue has been addressed
at length for other frameworks, or for defining the probability distribution of all
possible words. This is an issue for future research to address.

3. Theoretical perspectives

The motivation to formalize frequency and probability distributions with con-
crete theoretical mechanisms arises from a variety of different theoretical per-
spectives. We review some of the most prominent perspectives below, and also
establish the role of probability and related notions in these theories.

3.1 Variable rules

One of the earliest approaches to assume that phonology is probabilistic in nature
is the Variable Rules framework (Labov 1969; Cedergren & Sankoff 1974; Guy
1991a, 1991b). A fundamental assumption in this framework is that phonological
processes have variant realizations that cannot be straightforwardly characterized
with phonological grammars that require deterministic outcomes. Instead, vari-
able phonology must be analyzed with statistical models that bring out the prob-
abilistic aspects of both linguistic and non-linguistic factors. In its classic
implementation (Labov 1969), variable phonology is analyzed as standard re-
write rules, where the application of a process is expressed in terms of a proba-
bility. Statistical modeling is used to analyze the impact of conditioning factors
in the structural description of the re-write rule (the independent variables) on
the probability of a rule’s application (the dependent variable). After some exper-
imentation with the appropriate statistics, consensus arose in the variationist lit-
erature that logistic regression is the most appropriate analysis for this kind of
modeling because of certain problems with linear probability models (see Paolillo
(2002) for review). Many analyses make use of VARBRUL software, developed
originally in the 1970’, with multiple updates, including GoldVarb (Sankoft et al.
2005). This software package provides tools for managing input data, construct-
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ing contingency tables, and conducting the logistic regression analysis (see
Paolillo 2002, Appendix 1 for access to the software in different languages, soft-
ware support, and related statistical packages). The regression analysis produces
an input probability, which is the overall probability that the rule will apply, as
well as the probability weights for conditioning factors.

To illustrate the Variable Rules approach with an example, Panamanian Span-
ish spirantizes alveolar flaps to an apical fricative in a variable pattern that is
affected by position within a word, morphology, following segments, and socio-
economic status (Cedergren & Sankoff 1974). Paolillo (2002:33-34) gives an
analysis of this variable pattern using logistic regression. In his analysis, spiran-
tization has an input probability of 0.333, but contextual factors can increase or
reduce its probability. For example, the existence of a following lateral, which has
a probability weight of 0.743, leads to a higher probability of spirantization, 0.561.
Thus, the inclusion of the lateral results in a change from a roughly 1-in-3 chance
(basic input probability) to a 1-in-2 chance. As this example illustrates, proba-
bility is critical to the analysis of variable patterns: the overall analysis is stated
as a probability distribution, and the individual factors impacting the larger out-
come are expressed as probability weights (though whether analyses produced
by VARBRUL itself induce probability distributions over the entire data set, or
instead introduce weights that we interpret as probabilities, is a matter of debate;
see Eisner 2002). Variable Rules phonology was one of the first fully developed
theories linking phonological grammar, in the form of SPE rules, to probability.

3.2 Information theory phonology

Much research in probabilistic phonology has built upon insights from informa-
tion theory (Shannon & Weaver 1949; Pierce 1961) to incorporate these insights
into phonological analysis (Aylett & Turk 2004; Hume 2008; Hall 2009; Cohen
Priva 2012; Turnbull 2015; Daland & Zuraw 2018; Hashimoto 2021). Like many
approaches to probabilistic phonology, information theory typically analyzes data
from large corpora, producing counts of structures of interest and the contexts
they occur in. The corpus data are then used to calculate the surprisal, entropy,
and informativity of these structures relative to a specified context (see § 2 for def-
initions and formulas). These measures can either be employed directly to give
quantitative assessment of a phonological pattern, like the degree to which two
structures contrast (Hall 2012), or they can be employed as predictor variables
in larger statistical analyses. One advantage of information theoretic analyses of
phonology is that they have natural connections to the psycholinguistics of speech
perception and production (Hall 2009; Turnbull 2015), which creates the poten-
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tial for linguistic discovery and new insights into classic problems (see Shaw &
Kawahara (2018) and Pierrehumbert (2022) for review).

One case for information theory in phonology is that it can take context into
account across the entire language, rather than just the context for the phonolog-
ical pattern in question. For example, prior research has shown that predictabil-
ity within a context can affect segment and syllable durations: highly predictable
structures have shorter durations and can lead to segment deletion (Aylett &
Turk 2004; Pluymacekers et al. 2005). However, contextual predictability is not the
only factor, because structures with low contextual predictability can reduce and
delete, as in d in the word sudden, and structures with high predictability can also
be preserved. Cohen Priva (2015) argues that cases like this can be addressed if
one considers a role for informativity (see § 2), or the amount of information a
structure usually has across all contexts in a language, rather than in a specific
context. In particular, this study used a set of regression models to examine the
impact of segment probability, informativity, and contextual probability on con-
sonant duration and incidence of deletion in English. It found that higher infor-
mativity leads to longer durations and a lower incidence of deletion, even when
these other factors are controlled for. This approach, and others like it, demon-
strate the importance of probability in phonology: surprisal and informativity
derive directly from contextual probabilities, and they are important predictors of
phonological processes like reduction and segment deletion.

3.3 Phonology with Bayesian inference

Bayes’ rule (defined in § 2) makes use of known or prior information to make
inferences about unknown data, allowing the observer to make decisions among
competing alternatives. For this reason, Bayes’ rule is especially applicable in any
case where there is ambiguity in the signal, such as spoken language processing
(Norris & McQueen 2008), spoken language production (Kirov & Wilson 2013),
and second language processing (Wilson & Davidson 2013). Bayes’ rule has been
widely implemented in a variety of learning algorithms related to probabilistic
phonology, including learning phonological rules (Goldwater & Johnson 2004;
Goldsmith & Riggle 2012) and phonological categories (Feldman et al. 2009),
in addition to word learning (Frank etal. 2007; Xu & Tenenbaum 2007) and
speech segmentation (Norris & McQueen 2008; Goldwater et al. 2009; Daland &
Pierrehumbert 2011).

While the mathematical formulation of Bayes’ rule is relatively simple, there
are a variety of choices that need to be made related to determining prior prob-
abilities, the hypothesis space, the sampling method, and how the model and
hypothesis space is updated as the learner obtains more observations of the data.
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Bayesian models therefore have a wide range of applications, but each applica-
tion may have differing assumptions. For example, Wilson & Davidson’s (2013)
Bayesian account of second language processing integrates phonotactic probabil-
ity with perceptual likelihood, but the predictions of the model vary depending
on how phonotactic probabilities are defined.

3.4 Exemplar phonology

Another way in which phonological representations have been argued to show
gradient effects is in terms of frequencies in the lexicon. In exemplar models of
the lexicon, word representations are stored as the collective of individual mem-
ories of utterances, and the overall representation is the average of all exemplar
representations (Pierrehumbert 2001b, 2003a; Wedel 2003). Speakers encode all
individual utterances of a lexical item, both spoken and perceived, thereby keep-
ing track of statistical information such as frequency, context, variability, and
fine-grained phonetic details. This kind of representation can directly accommo-
date many of the factors at work in probabilistic phonology, such as frequency,
salience, and talker-specific representations. One potential issue with exemplar
models is that if every utterance is stored, including ungrammatical utterances
and misperceptions, over time, everything should become a possible word. To
address this, Wedel (2003) proposes that representations in exemplar models have
weights that track frequency, relevance, etc., so that more frequent and more
appropriate productions have higher weights, while the weights of infrequent or
misperceived tokens may decay over time (see Tupper (2015) for mathematical
analysis of this approach within a field model). The strengths of different cues can
change over time, depending on factors such as frequency and confusability.
Exemplar phonology is compatible with a theory of phonology in which
there are many levels of abstraction in phonological representations, that is, con-
tinuous phonetic space, discrete phonological categories, word-forms, etc.
(Pierrehumbert 2003b; Beckman & Edwards 2010). One proposal for such a
system is that abstract, categorical phonological rules (such as vowel harmony)
emerge out of highly detailed lexical representations within the lexicon (Bybee
2001; Pierrehumbert 2001a). Another possibility is that exemplar models contain
a function that allows speakers to generalize to novel items (Nosofsky 1986).
For example, the probability that a speaker will confuse two different segments
relates to their phonetic similarity, which in turn correlates with the probability
of a sound change (Bybee 2001; Blevins 2006; Johnson 2006; Garrett & Johnson
2013). A similarity function could also be used to determine the probability with
which a novel lexical item is likely to be inferred as grammatical by a speaker
of the language. For example, abstract processes like vowel harmony can be
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accounted for in exemplar phonology, so long as the similarity is calculated based
on properties of the vowels, and the morphological composition of the words in
question (Cole 2009).

3.5 Analogical models of phonology

Exemplar models can also account for generalization through analogy. In analog-
ical models of phonological representations, generalization to novel items occurs
through analogy to known items (Skousen 1989, 1992, 1995; Eddington 2000;
Bybee 2001), or through the spreading of activation among words that have sim-
ilar form and meaning (Daelemans et al. 2002). A lexical item selected in anal-
ogy is dependent on three factors: proximity (e.g. similarity), gang effects (e.g. the
number of items that behave similarly), and heterogeneity (e.g. the lack of more
probable alternatives). Analogical models that analyze these factors are therefore
compatible with usage-based approaches to linguistic structure (Bybee 2001), and
can be used to make predictions about the probability of a given phonological
form. For example, an analogical model that assigns stress patterns as a function
of these three factors (Eddington 2000) has been shown to successfully predict
stress placement in 94% of Spanish words. Analogical models have also been used
to demonstrate how phonological variables predict morpho-phonological opera-
tions, such as the English past tense (Eddington 2004) and stem alternations in
Dutch (Ernestus & Baayen 2003).

3.6 Constraint-based models

While usage-based models of language, such as exemplar and analogical models,
have been relatively vocal about gradience in phonological processes, generative
models have also recently begun to assign a role for gradience and probability.
In particular, constraint-based models have established a role for grammar in the
analysis of probabilistic phonology. In these models, grammars are constraint sys-
tems that optimize over candidates for an input-output mapping. In OT (Prince
& Smolensky 2004[1993]), variation between languages is accounted for with the
interaction of a universal set of constraints; differences between languages are a
result of different constraint rankings. The problem of learning a grammar is one
of finding the constraint ranking for a given language, and OT is readily used as a
complement to learning theories (Tesar & Smolensky 2000; Prince & Tesar 2004;
Jarosz 2006). Classic OT (Prince & Smolensky 2004[1993]) assumes a single, cat-
egorical outcome. However, there are several variations of OT, including models
with built-in learning algorithms, that have been successfully adapted to account
for probabilistic patterns.
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For example, Boersma & Hayes’ (2001) Stochastic OT model is an early
example of using OT to account for both learning and variability. Learning
involves gradually adjusting the ranking value of constraints on a continuous
numerical scale, which establishes the ranking relationships among constraints
required for determining grammatical outcomes. Variable outcomes arise in this
model with an evaluation procedure that, for each constraint, permutes the rank-
ing values by drawing on a normal distribution centered on its learned value. By
introducing this noise in the model, constraints with overlapping distributions
produce variability in the output.

Other constraint-based approaches make use of Harmonic Grammar (HG),
a co-development of OT, in which constraints are weighted rather than strictly
ranked (Legendre et al. 1990; Smolensky & Legendre 2006). In Harmonic Gram-
mar, candidate outputs are assessed with a so-called harmony score, calculated
as the weighted sum of a given candidate’s constraint violations. The candidate
with the highest harmony score is selected as the output. Like in Stochastic OT
(Boersma & Hayes 2001), noise can also be introduced in constraint evalua-
tion and used to account for phonological variation (Goldrick & Daland 2009;
Coetzee & Pater 2011). Importantly, variation arises from the grammatical archi-
tecture, because it is produced by the noisy evaluation of constraints, the stuff
of grammars. As discussed in § 5, because each candidate is assigned a harmony
score, Harmonic Grammar can approximate gradience in lexical statistics
through phonological learning (Coetzee & Pater 2008).

Harmony has also been employed in Maximum Entropy (MaxEnt) models
where harmony scores for a candidate set are converted to probability scores,
which indicate the probability of producing any given output form (Goldwater &
Johnson 2003; Hayes & Wilson 2008); see also Daland (2015) for a formal analy-
sis. Another use of harmony, Gradient Symbol Processing, combines an opti-
mization dynamics similar to Harmonic Grammar with a quantization dynamics
that pulls outputs toward discrete symbolic categories (Smolensky et al. 2014).
This approach has been successful at modeling gradient patterns in speech errors
(Goldrick & Blumstein 2006). Finally, constraint-based grammars can also make
use of analogy (§ 3.5), whereby paradigmatic operations across words support
generalizations within the lexicon and guide learning (Becker & Gouskova 2016).

3.7 Connectionist phonology

As noted above, Harmonic Grammar uses a similar architecture to “classic” OT,
except that Harmonic Grammar makes use of weighted, or soft constraints, rather
than strict rankings. Another way to implement soft constraints to account for
probabilistic phonology is through activation dynamics in connectionist net-
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works (Goldsmith 1993; Alderete & Tupper 2018). A connectionist network is a
web of interconnected micro-processors or “units”. Soft constraints are analyzed
as connections between these micro-processors (Smolensky 1988), and are satis-
fied if the receiving unit resembles the state of the sending unit (for positive con-
nections) or resembles the opposite state (for negative connections). The strength
of the constraint is the connection’s weight (or the weights of many connections),
parallel to Harmonic Grammar (Smolensky & Legendre 2006).

Like OT and Harmonic Grammar, connectionist models are learning models.
The weights of connections start at random and are learned through exposure
to a large data set. After training, connectionist networks produce outcomes that
can, like Harmonic Grammars, approximate probabilistic patterns very well (St.
John & McClelland 1988; Thomas & McClelland 2008). Connectionist models
have been successful at accounting for gradience, variability, and sensitivity to fre-
quency. For example, Laks’ (1995) connectionist model of French syllabification
(based on ideas from Goldsmith & Larson 1990) parallels the graded intuitions
that French speakers have of different syllabic roles.

4. Applications

This section explores how the theoretical frameworks discussed above can be
applied to a variety of gradient phenomena, including more accurate character-
izations of phonological processes, phonological variation, sound change, and
language learning. While these processes have implications for psycholinguistic
processing of phonology, we do not specifically review applications to probabilis-
tic phonology in psycholinguistics here (but see Jurafsky 2003).

4.1 Linguistic discovery and description

The theories discussed in § 3 make use of computational methods and typically
work with large data sets (corpora). The availability of a range of computational
toolkits for exploring phonology in corpora (Rose et al. 2006; Bird et al. 2009;
Myers 2012; Durand et al. 2014; Hall et al. 2019) has led to new discoveries and
insights into known phenomena. To illustrate with a simple example, Bird et al.
(2009:103) show how to use the Natural Language Toolkit to uncover phono-
logical generalizations in Rotokas, a Northern Bougainville language of Papua
New Guinea. With just a few lines of Python code applied to a dictionary of this
language, they produce a frequency distribution for consonant-vowel sequences
and uncover a near complementary distribution of t and s. Computational meth-
ods used with large data sets, and the probabilistic models they produce, have
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strong potential to help uncover previously unknown regularities and insights.
For example, a simple combinatorics for English syllabic roles, ignoring fre-
quency, predicts far more medial CCC clusters than actually occur. When viewed
in terms of the joint probability of English onsets and codas, however, the actual
frequencies of these clusters are surprisingly close to their expected frequencies
(Pierrehumbert 1994).

These techniques allow researchers to make use of continuous variables to
analyze phonological generalizations instead of traditional categorical variables.
This has helped to uncover and explain processes that have been problematic
in classic categorical approaches to phonology. For example, root co-occurrence
restrictions have been difficult to predict with categorical restrictions on possible
segments (Pierrehumbert 1993). Applied to the classic problem of consonant co-
occurrence in Arabic roots, Frisch (1996) et seq. demonstrated the validity of
continuous variables by showing how observed/expected values correlate with
the phonological similarity of two sounds (see Frisch (2011) for more detailed
discussion of similarity in phonology). Analyses using information theory have
also shown the relevance of continuous variables, including intermediate types of
phonological contrast that fall on a gradient scale of predictability (Hall 2009).
Linguistically significant generalizations such as these, and the connections to the-
ories of comprehension and production that they support, are made possible by
theories of phonology that recognize explicit roles for frequency and probability.

In a sense, gradient patterns and the frequency distributions supporting them
have always attracted interest in phonology. Quantitative accounts of specific
structures have supported serious inquiry of a host of topical problems. For exam-
ple, Maddieson & Precoda (1992) investigate the role of CV frequencies in eval-
uating articulatory versus acoustic accounts of segment inventories. Contingency
tables documenting consonant co-occurrence and vowel co-occurrence in roots
have supported a host of theoretical pursuits in harmony and disharmony phe-
nomena (Mester 1986; Yip 1989; Harlow 1991; Padgett 1995; Alderete & Finley
2016). Finally, a number of studies have focused on how stem phonotactics guides
morphological operations (Zuraw 2000; Ernestus & Baayen 2003; Jones 2008).

Many phonologists are now pushing beyond these focused investigations of
specific segmental frames and using the methods and measures discussed above
to give more broad and open-ended accounts of probabilistic phonology. That
is, statistical accounts of the distributions of phonological structure are becom-
ing part of the primary linguistic description of many languages. For example,
Leung et al. (2004) motivate a broad account of type and token frequencies in
Cantonese, including descriptive statistics of segments, rimes, and tone, on the
basis that these statistics give new insights into the language and are indispensable
in psycholinguistic studies. Likewise, a number of researchers have documented
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gradient phonotactics for its own sake, giving descriptive accounts of segment dis-
tributions, segment combinations such as consonant co-occurrence, and prosodic
patterns (Alderete & Bob 2005; Alderete & Bradshaw 2013; Récz etal. 2016;
Orzechowska & Ridouane 2018). The increased importance of the general quan-
titative accounts of the distributions of phonological structure is another indica-
tion of the importance of probabilistic phonology, in the empirical sense of this
term.

4.2 Phonological variation

Phonological processes are variable in nature and are impacted by a host of
linguistic and non-linguistic factors. The approaches to variable phonology dis-
cussed in § 3.1 address this problem head on by analyzing the probability of
rule application and documenting the scope and magnitude of the conditioning
factors in a standard re-write rule (Labov 1969; Cedergren & Sankoff 1974).
Constraint-based approaches model variation with a stochastic component in
constraint evaluation and a noise signal (Boersma & Hayes 2001; Coetzee & Pater
2011; Zuraw & Hayes 2017). Rather than positing variation on any structure in
the context of a rule, these models limit variation to random permutations of
constraints with some generality in phonological typology, after the role of these
constraints in the grammar is established through learning. For illustrations and
comparison across theories, see Coetzee & Pater (2011), who give an overview
of the mechanics of Variable Rules and constraint-based analyses, and provide
extensions to lexically governed variation. This work gives detailed analyses of
t-deletion in English dialects in each of these models, though exemplar and infor-
mation theoretic models are not examined.

As noted in § 3, information theoretic approaches explain the motivation
for specific phonological processes like deletion and reduction by analyzing the
intrinsic communicative value of form structure (Cohen Priva 2015, 2017). In
this approach, highly predictable forms, like the consonant [y] after hearing the
sequence [steendr__], contribute little to the signal, and may thus succumb to pro-
duction constraints (e.g. reduction or deletion) with minimal signal loss. Exem-
plar and usage-based models of phonology also encode detailed information that
may define the space of variable phonology, including phonological context and
register. Though variation tends to focus on context-free phonetic attributes in
these models, exemplars that integrate acoustically rich information at the word
level can represent a wide range of variation (Drager 2011).

In terms of comparing these different approaches, as we discuss in § 5, we
do not believe that these models are easy to distinguish on empirical grounds,
either because the models are so similar that they make very similar empirical
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predictions, or simply because they focus on different kinds of variation. Instead,
we think it is more fruitful to focus on the core assumptions, and pursue them
vigorously as a way of validating specific theories. Some of the questions raised
by core assumptions, for example, if grammar formed from universal constraints
restricts variation internally the same way it does cross-linguistically, are fasci-
nating to consider but far from concluded (§ 5). However, one key assumption,
namely whether phonological analysis must reference probabilities at all, has been
pursued to conclusion. An earlier constraint-based approach based in Optimal-
ity Theory (Anttila 1997; 2007) differs from the models discussed above in that
it does not refer to probabilities or weights in the grammar. Instead, constraints
in this model may be left unranked relative to other constraints, and the prob-
ability distribution of the variant forms is produced by permuting the rank for
all unranked constraints and observing the percentage occurrence of the variants
in all possible ranking outcomes. This approach has been successful with highly
constrained systems, but it has also been criticized because it imposes empiri-
cally implausible constraints on the probabilities of variable outcomes (Boersma
& Hayes 2001; Coetzee & Pater 2011), and it seems that the only way to address
this problem is to introduce constraints that are not independently motivated.
Thus, while there are some differences in how probability factors into analyses of
phonological variation, it seems to be agreed that probability should be part of the
grammatical account.

4.3 Experimental phonology

Many of the synchronic patterns described above have been investigated exper-
imentally with the goal of testing the impact of frequency and probability dis-
tribution on novel word-forms (Solé et al. 2007; Kawahara 2011). A standard
experimental procedure is to probe native speaker judgments on non-word stim-
uli (Coleman & Pierrehumbert 1997). These judgments reflect phonotactic prob-
abilities (Frisch etal. 2000; Treiman et al. 2000; Bailey & Hahn 2001; Frisch
& Zawaydeh 2001; Frisch & Stearns 2006; Albright 2009; Frisch & Brea-Spahn
2010), suggesting that speaker knowledge is gradient in nature and correlates with
probability distributions found in the lexicon. While lexically-based approaches
directly encode this knowledge as an emergent property of the lexicon (Plaut &
Kello 1999; Frisch et al. 2000), harmony scores and related maximum entropy val-
ues used in constraint-based approaches are also correlated with gradient accept-
ability (Keller 2006; Hayes & Wilson 2008).

Experimental investigations have also tested the role of probability in phono-
logical processes by manipulating the factors known to affect phonological alter-
nations (Crosswhite et al. 2003; Ernestus & Baayen 2003, 2004; Hayes & Londe
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2006; Zuraw 2007; Hayes etal. 2009; Moore-Cantwell 2016). For example,
Ernestus & Baayen (2003) probed the neutralization of obstruent [voice] in Dutch
by presenting subjects with forms that had an unvoiced final obstruent, and then
asked them to produce a past tense form which revealed their guess as to the
underlying [voice] specification. Responses correlated with the frequency distri-
bution of [voice] neutralization in the lexicon, including the frequencies of the
affected segment and the contexts for that segment. This work supports both a
stochastic component in constraint-based grammar (Hayes & Londe 2006) and
connectjonist or analogical models that are sensitive to the phonological similar-
ity structure in the lexicon (Ernestus & Baayen 2003; Alderete et al. 2013).

One of the goals of experimental phonology is to help provide psycholinguis-
tic evidence in favor of a given theoretical model. For example, Hayes & Londe’s
(2006) wug test data is used to support Zuraw’s (2000) model of the lexicon and a
stochastic, constraint-based approach to probabilistic grammar. Much of the work
that supports exemplar and usage-based models of phonology is also based on
experimental evidence. However, many of these experiments are used to inform
the debate on whether speakers store abstract representations of lexical items
(Hay et al. 2006; McQueen et al. 2006; Tilsen 2009), rather than to inform which
theoretical model best captures probabilistic data. Model comparison is typically
based on two metrics: model fit and simplicity of assumptions. Generally, the var-
ious modeling approaches under comparison fit and capture experimental data
relatively well (Ernestus & Baayen 2003; Coetzee & Pater 2011), suggesting that
simplicity is often used as a deciding factor for arguing for a particular approach.
For example, Ernestus & Baayen (2003) compare five different models, including
Stochastic OT, VARBRUL, and an analogical model on the Dutch voicing neu-
tralization data discussed above. While all five models capture the variation in
the data well, Ernestus & Baayen (2003) argue for analogical models that require
fewer parameters than constraint-based (OT) models.

As noted above, when comparing models of experimental phonology, they
tend to have a good fit with the experimental data (e.g. Hayes & Londe (2006)
and Ernestus & Baayen (2003)). However, judgments gleaned from experimental
data do not always directly mirror the probabilities found in corpora, nor is it
clear whether the probabilities should be fit to model within or between speaker
variability, because modeling the average of a population of speakers may not
reflect any individual’s phonological knowledge. For example, Crosswhite et al.
(2003) found that while Russian native speakers’ stress assignments in nonce
forms were in the same direction as those found in corpora, subjects’ responses
did not directly match lexical frequencies.

Other studies have documented different levels of acceptability for forms that
have the same frequency (Moreton 2002), and that only a subset of the viable
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statistical regularities in the lexicon impacts native speaker judgments (Becker
etal. 2011; Moore-Cantwell 2013). A large scale study of syntactic acceptability
in English also found that acceptability is gradient, but this acceptability does
not reduce to probability (Lau et al. 2017). Thus, while many studies have shown
a strong fit between experimental and corpus data, it is clear that probability
alone cannot account for many facets of linguistic knowledge. More research is
needed to better understand how probability distributions are used in speakers’
knowledge. For example, probability distributions over some representations (e.g.
voiced consonants) may yield different results than probability distributions over
others (e.g. stressed vowels), and these distributions may interact in interesting
ways (Kapatsinski 2012).

4.4 Phonological categorization

There is a significant amount of evidence that the production and perception
of phonological categories are probabilistic (Pierrehumbert 2003b). First, even
within a single speaker, for the same token, the phonetic properties of a given
segment will vary from utterance to utterance, and this variation increases with
individual speakers across a variety of utterances. One way to formalize the con-
nection between production and perception in shaping phonological categories is
through Bidirectional Optimality Theory (Boersma & Hamann 2008). In Bidirec-
tional OT, perceptual changes result in different lexical representations, which can
then be integrated to production systems. This back and forth gives rise to sound
inventories that optimize constraints on both perception and production. Other
constraints on vowel inventory can be drawn from dispersion theory (Lindblom
1986). Dispersion theory predicts the shape of vowel inventories in terms of dis-
persion across the acoustic space, and that these inventories should take up as
much acoustic space as possible. This predicts, for example, that a three-vowel
inventory will not include three high/front vowels, but will more likely include
an inventory similar to [i, a, u] that takes up the majority of the acoustic space.
Dispersion theory can be used to explain perceptual constraints on phonological
behavior that is heavily influenced by vowel inventories such as vowel reduction
(Padgett 2004; Padgett & Tabain 2005) and vowel harmony (McCollum 2018).
According to many exemplar models of phonology (e.g. Pierrehumbert
2001b; 2003a), representations of phonetic categories form a “cloud” of the pho-
netic properties of individual utterances. This poses a challenge to the learner
because there is a large amount of overlap within the phonetic realization of dif-
ferent sounds (e.g. the phonetic realization of [e] often overlaps with the pho-
netic realization of [¢]). However, the amount of overlap will vary depending on
context and allophonic versus phonemic status. Maye et al. (2002) demonstrated
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that infants are more likely to infer two categories when the distribution resem-
bles a bimodal distribution, and a single category when the distribution is uni-
modal. Bayesian analyses of categorization based on exemplar representations
that track context, frequency, extent of overlap, and information from “higher lev-
els” of abstraction (such as a word or morpheme) can allow the learner to infer,
with measured success, the phonetic distributions of the categories in one’s lan-
guage (Shi et al. 2010). Information at higher levels of abstraction can also be used
to provide information about contextual effects that constrain the phonetic real-
ization of various categories, thus helping the learner to infer phonetic categories
(Feldman et al. 2013).

4.5 Sound change

Probabilistic models of phonology that integrate frequency and language use (e.g.
Bybee (2001), Zuraw (2003), Cohen Priva (2012), Hume & Mailhot (2013), Wedel
etal. (2013), and Hay & Foulkes (2016)) can be used to address several impor-
tant questions in sound change, such as why some sound changes are more com-
mon (or probable) within and across languages, and why some sound changes
involve reduction, while others involve hyper-articulation or lengthening. Fre-
quent items are more likely to be reduced, while confusable items are more likely
to be hyper-articulated (Scarborough 2004). Because exemplar models encode
phonetic details, frequency, and context, it is possible to model the diverse factors
that contribute to a given sound change (Bybee 2000; Pierrehumbert 2001a).
Wedel (2006), for example, models changing representations in terms of evolu-
tion, but is also compatible with analogies to lexical/neural activation, where the
strengths of connections between items change as a result of the strength and fre-
quency of use. In addition, functional pressures such as informativity can also be
used to predict the probability and direction of sound change: more informative
segments are more likely to be preserved or lengthened than less informative seg-
ments (Cohen Priva 2015).

4.6 Language development and segmentation

Given that phonological processes show probabilistic tendencies, it is not sur-
prising that researchers have made great strides in understanding phonological
development when looking at development through a probabilistic lens. Using
a multidisciplinary approach to understanding the mechanisms that underlie
speech segmentation, a tremendous amount of progress has been made in the last
25 years related to language development, particularly speech segmentation and
phonotactic learning.
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Speech segmentation is likely one of the first places where a human learner
might make use of probability. As noted in § 2, the probability of one syllable
preceding another is higher within words than between words. After a very lim-
ited exposure to a speech stream, with no other cues for word segmentation
other than transitional probability, infants were able to recognize the difference
between words and partial words (Saffran et al. 1996; Aslin et al. 1998). In addi-
tion, learners may use knowledge of their phonological grammar to segment
speech (Johnson & Jusczyk 2001), such as vowel harmony (Suomi et al. 1997;
Vroomen et al. 1998) and phonotactic constraints (McQueen 1998). Newport &
Aslin (2004) showed that learners were unable to segment speech in terms of
non-adjacent dependencies based on syllables, but could segment speech based
on non-adjacent consonants, suggesting that learners parse consonants and vow-
els differently, perhaps on separate “tiers” These results demonstrate the impor-
tance of distinguishing the level of representation that probabilities apply to.
While transitional probabilities over segments can explain a large portion of
speech segmentation, the progress that has been made would not be possible
without integrating statistical information with more detailed linguistic cues, such
as consonant/vowel status, prosody, coarticulation, and phonotactics (Daland &
Pierrehumbert 2011). In fact, linguistic cues may be more reliable than statisti-
cal cues, as infants will segment speech in terms of linguistic cues over statistical
cues when these cues are in conflict (Johnson & Jusczyk 2001). Models making
use of Bayesian induction have been helpful for integrating phonotactic informa-
tion into probabilistic induction of word boundaries (Goldwater & Johnson 2004;
Daland & Pierrehumbert 2011).

Probabilistic approaches to learnability have also been used in phonotactic
pattern learning, including Bayesian models (Shi et al. 2010; Feldman et al. 2013),
and models that integrate statistical and linguistic cues (Chambers et al. 2003;
White et al. 2008; Adriaans & Kager 2017; Schatz et al. 2021), demonstrating the
role of probability in learning phonotactic constraints. Because statistical learning
mechanisms are often based on transitional probabilities, such models of statis-
tical learning of phonotactics may be compatible with finite-state based phono-
logical grammars. In these grammars, phonological representations are based on
transitions or precedence relationships (Heinz 2010). Learners may make use of
transitional probabilities to help form abstract models of the grammar such as
those used in finite-state models.

Probabilistic phonology is also consistent with theories of learning biases in
phonology (Wilson 2006; Finley & Badecker 2007; Moreton 2008). Staubs (2014),
for example, provides an error-driven learning account of the typology of stress
systems using bigram statistics. These bigram statistics can be tied to both rep-
resentational constraints on foot structure and probabilistic constraints on per-
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ception. In addition, language learners tend to produce more frequent patterns
(e.g. CV syllables) earlier than less frequent patterns (e.g. CVC syllables) (Fikkert
1994; 2007). Because frequency is often conflated with markedness, it is some-
times unclear how to interpret age of acquisition findings. It is also important to
note that because certain developmental patterns (e.g. consonant harmony (Goad
2001)) do not reflect anything that the child may have heard, any theory of lan-
guage development must allow for productions outside of the lexicon. A challenge
to representing children’s productions is that they may not reflect a child’s lexi-
cal representations because children can distinguish their own mispronunciations
from others’ (e.g. a child will produce fish as fis, but will not accept others’ mis-
pronunciations (Smolensky 1996; Clark 2016)).

5. Discussion: Finding common ground

The breadth of the applications of probabilistic phonology reviewed above sup-
ports a consensus emerging in the field that frequency and probability are nec-
essary components of phonological theory. Gradient phonotactic generalizations
and variable phonological processes are attested in every language seriously inves-
tigated, and experimental testing of phonological alternations has also revealed a
role for probability in a range of unrelated languages. Probabilistic patterns are
not just a peripheral empirical dimension in phonology, or attested in a small
number of cases. Rather, they constitute a core facet of phonological systems in
general.

Probabilistic structure has also been developed across a range of theoretical
models, which again underscores this emerging consensus. Probability has always
been integral to psycholinguistic theories that refer to phonological structure
(Jurafsky 2003), and several theories, such as exemplar and connectionist models,
grew out of insights from psycholinguistics. Probability and frequency are also
critical to the goals of information-theoretic phonology and the underlying mea-
sures they employ. While constraint-based theories do not necessarily require the
use of lexical frequencies, constraint-based models can readily integrate probabil-
ity and statistics with abstract constraints on representations.

One can view this integration of probabilistic structure on both empirical
and theoretical levels as a kind of progress, because it reflects a shared view of
the centrality of non-categorical structure in phonology. This point may not be
appreciated by recent newcomers to the field, but the history of the development
of phonological theory has not always been kind to this view (Hockett 1955;
Halle 1962; Stanley 1967). Change has certainly occurred over the last 70 years
(Pierrehumbert 2022).
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Despite this progress, we contend that many problems still exist concerning
precisely how assumptions about frequency and probability are implemented. In
particular, given the diversity of perspectives we have reviewed above, the cur-
rent state of the field can be characterized by a lack of cohesion that leads to a
number of problems in the advancement of the science. The existence of many
theories of probabilistic phonology leads to competing explanations of the same
phenomena, yet most of these solutions have not been rigorously evaluated. Fur-
thermore, attempts at comparative analysis suffer from problems that prevent an
on-the-balance comparison. Finally, these models approach phonological analy-
sis from very different base assumptions, with differing views about the existence
of input-output mappings, roles for underlying representations, and treatment
of allomorphy. These varying assumptions further inhibit progress because it
becomes almost impossible to compare and build on work when the basic founda-
tions vary so dramatically. This exacerbates the issue of silos in phonology, where
researchers with shared interests but varied theoretical bents are unable to effec-
tively communicate their findings to one another.

To address these concerns, we attempt to summarize some of the problems we
see that lead to this lack of cohesion, and also suggest some approaches that we
think aid in finding common ground.

5.1 Problems

We have presented several methods and applications for explaining probabilistic
phonological patterns. One might be tempted to ask which one best captures the
data in the most cognitively plausible way. Ideally, each different approach could
be neatly compared, and the one with the best fit of the data, with the simplest
assumptions would be deemed, the “best” However, comparing, for example,
exemplar models with constraint-based generative models, is often problematic.
First, different models are often used to explain different phenomena, leaving no
common empirical ground for comparison. Second, when models can be com-
pared, the focus is on descriptive adequacy, rather than explanatory power. Third,
comparing “which model is best” may not be the appropriate question. Rather, a
better question may be to try and understand the contribution from various dif-
ferent approaches to understand probabilistic effects.

It can be very difficult to compare approaches that have different goals
because the problems of interest are often divergent. Researchers who use gen-
erative approaches are often interested in more abstract interactions within and
across languages, like constraint interaction and typology, while researchers who
use exemplar and information-theoretic approaches are typically interested in
continuous phenomena, such as sub-lexical and sub-phonemic variation and
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talker-specific processes. When the goals of two competing approaches are so
vastly different, an adequate comparison is extremely challenging. For example, if
models based on information theory work to explain gradience in terms of histor-
ical change, but a maximum entropy model works to explain gradience as a learn-
ing problem, then it is not clear how to adequately compare each approach.

One criticism of generative models is that while they can account for proba-
bilistic phenomena, it often is perceived as an afterthought, or add on, rather than
a core part of the grammar. Because exemplar and information theoretic models
(for example) are designed to account for probabilistic and gradient phenomena,
they are better at accounting for intrinsically gradient phenomena. However, it
is important not to conflate descriptive adequacy with explanatory adequacy. As
Benus (2005) argues, an exemplar model of subphonemic variation in Hungarian
vowel harmony is “descriptively adequate” but does not provide an explanation
for the underlying principles that govern transparent vowels in vowel harmony
more broadly. Model fit can also be misleading if predictive power and overfitting
are not also assessed. Gorman (2013) examined the gradient phonotactic well-
formedness judgments from several experiments (e.g. Albright & Hayes 2003),
and found that the gradient models that were used to account for well-formedness
judgments in those studies did no better than a simple baseline. This suggests that
striving to find a “perfect fit” between human judgments and a statistical model
may be addressing the wrong questions. Information theoretic accounts may also
be problematic if they do not adequately operationalize communicative efficiency
in a way that is both mathematically cogent and cognitively plausible. Model fit
may also vary depending on what the data represent, and what the model is cap-
turing. For example, a large corpus may be representative of a variation across a
group of speakers, but may not necessarily represent variation in an individual
speaker. A model that is meant to capture the cognitive processes and representa-
tions at the individual level may not benefit from a perfect fit from a corpus that
does not represent any given individual.

One potential solution to this problem is to consider how insights from
different approaches might inform the other, such as considering what repre-
sentations might be obligatory, and at what level (e.g. which models require
syllable structure or features, as shown in Daland et al. (2011)). Mathematically-
based models, which are grounded in provable theorems, and often provide mea-
sures of precision and accuracy, can provide a template for generative theories.
Mathematically-based models can, in turn, gain insights from generative mod-
els about the representations of phonological processes across language varieties.
Understanding the different assumptions that are required to model a given phe-
nomenon can lead to a better understanding of what is necessary and sufficient to
understand gradience at different levels.
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A different set of problems stem not from the actual object of study, but
from the nature of the theories themselves. While some theories have such differ-
ent assumptions that they are impossible to compare (e.g. exemplar theory and
OT), other theories have such similar assumptions that the predictions are almost
identical (e.g. MaxEnt Harmonic Grammar and Noisy Harmonic Grammar). For
example, variations of constraint-based models make use of relatively similar
mathematical foundations, and often have very similar predictions. Thus, Max-
Ent Harmonic Grammar and Noisy Harmonic Grammar can both learn a prob-
abilistic version of constraint weights. One difference is that MaxEnt HG defines
a probability distribution over a candidate set, while Noisy HG produces a sin-
gle optimal output. This difference leads to relatively minor predictions about the
probabilities of harmonically bounded candidates and also different assumptions
about the types of data models are exposed to (Hayes & Wilson 2008; Coetzee
& Pater 2011). However, both methods for grammar learning produce very simi-
lar results, raising questions about what can be learned from different versions of
Harmonic Grammar when the results are relatively similar.

Often times, the differences between approaches are related to entrenched
theoretical philosophies, making it difficult to isolate predictions related to prob-
abilistic phonology. For example, many theories of phonology like OT and HG
take a Universal Grammar (UG) as the null hypothesis: all constraints are innate
and universal, making the learning problem one of determining the appropriate
ranking of constraints for a given language. However, it is not clear what bearing
the role of UG in OT and HG have on probabilistic phonology. While such
questions related to the theoretical architecture (Paolillo 2002; Coetzee & Pater
2011) are interesting, they are generally orthogonal to how to integrate probability
in phonology. While theories like Harmonic Grammar have a commitment to
UG, they can be loosened to admit language-particular constraints. For example,
Hayes & Wilson (2008) allow for induction of constraints from a universal set of
representations, raising questions about where UG might reside (e.g. in the con-
straints or the representations that build the constraints). Likewise, models that
do not make use of UG, such as Variable Rules phonology, can be modified to
limit the factors influencing free variation to cross-linguistically attested patterns,
as is common in practice (Labov 2004).

While it can be a challenge to compare differences between versions of Har-
monic Grammar because they are so similar, the problem of comparison can
also occur when the assumptions are fundamentally different. Root co-occurrence
restrictions in Arabic have been studied from a variety of perspectives, and would
appear to be an ideal candidate to contrast different approaches. However, a com-
parison of two recent accounts of these restrictions, namely Coetzee & Pater
(2008) and Frisch et al. (2004), reveals the difficulty in comparing even radically
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different theories. Coetzee & Pater (2008) trained a Harmonic Grammar (with
17 feature-specific and context-specific Place cooccurrence constraints, and one
faithfulness constraint) on representative Arabic data using standard error-
corrective learning methods. The result is a set of constraint weights that approx-
imate the relative well-formedness of Arabic roots using the gradient measure of
relative harmony, a measure derived from harmony by comparing the winning
candidate with the next-best competitor. Frisch et al. (2004), on the other hand,
proposed that Arabic roots are subject to similarity avoidance, a gradient con-
straint against consonant pairs. This constraint predicts a gradient in which pairs
with greater similarity (i.e. pairs of segments that share more phonological
classes) are less well-formed. The Similarity Avoidance account is based on paral-
lels in speech production, which exhibit a related avoidance of identical and sim-
ilar segments.

When both approaches are compared in Coetzee & Pater (2008) using 7* (a
measure of model fit), the Harmonic Grammar account fares better than the Sim-
ilarity Avoidance approach. For example, the fit of relative harmony and O/E
(observed/expected) on the Harmonic Grammar account is 0.40 for all non-
identical consonant pairs, but only 0.20 when fit with similarity on the Similar-
ity Avoidance account. As pointed out in Frisch (2011), however, this comparison
does not take into consideration the differences in the degrees of freedom afforded
in each analysis. The linear regression analysis (that produces the 1 variable) for
both approaches introduces two degrees of freedom, because the attested data is
fit by correlation with a predictor value. However, the Harmonic Grammar analy-
sis has many additional “hidden” degrees of freedom because relative harmony
derives from the weighted sum of 18 distinct constraints, and all of these con-
straints receive weight coeflicients by a procedure for learning weights from a
large corpus of Arabic roots. Clearly, these independent parameters, tied to spe-
cific combinations of place and manner classes, lead to a better fit because the
disharmonic patterns are sensitive to them. The Similarity Avoidance account, on
the other hand, is not trained on large data sets, and does not have a large number
of independent parameters. Indeed, similarity-based accounts have avoided using
comparable mechanisms, like the weighting of specific features in calculating sim-
ilarity (Pierrehumbert 1993; Frisch et al. 2004), precisely because they introduce
additional degrees of freedom and are therefore not a substantive test of their the-
ory. For this reason, it is not clear that a universal set of weighted constraints (as
proposed by the HG analysis) is necessarily a better approach to the Arabic data.
While the Similarity Avoidance approach may not, on further analysis, have the
same descriptive adequacy of the HG approach, it may have more explanatory
power, as this approach is grounded in psycholinguistic principles of phonologi-
cal processing.
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5.2 Some productive trends

Given these issues, how do we find common ground? Some recent work has dis-
cussed modest modification to existing models that represent improvements. For
example, Coetzee & Kawahara (2013) discuss introducing sociolinguistic vari-
ables to harmonic grammars of variable phonology as a way of addressing some
of the social factors that are important to the original accounts of Variable Rules
phonology. Another model improvement uses Bayesian inference to determine
how evidence drawn from in-the-moment phonetic reduction and enhancement
can lead to long-term phonological changes (Hall et al. 2018). By giving prob-
lems like sound mergers, which have been analyzed in exemplar phonology, a
Bayesian analysis, this approach provides a framework for making explicit par-
allels between research in speech perception and phonological analysis (see also
Flemming 2010). While these certainly are positive developments, we believe the
depth and extent of the problems discussed above requires more action to find
common ground. We highlight below some productive trends that we think will
advance the cause.

One trend involves focusing squarely on the underlying mechanism that dri-
ves a pattern, and then establishing all of the steps that link the mechanism to
phonological analysis. In a sense, contemporary phonology is keenly focused on
underlying mechanisms (e.g. Boersma 1998), and constraint-based phonology in
particular strives to provide phonetic and function motivation for phonological
patterns. For example, in addition to its typological motivation, Pater (1999) gives
explicit motivation for *NC, a constraint banning nasal+voiceless obstruent clus-
ters, on articulatory grounds (the banned sequences require an unnaturally quick
velic closure). While such motivations are important, it has yet to be established
how the underlying motivation leads ultimately to attested synchronic patterns. In
this case, how do we get from the articulatory pressures in post-nasal voicing to
the typological patterns banning voicelessness after nasals? We think that estab-
lishing this link can help address the problems arising from the diversity of per-
spectives in probabilistic phonology.

This “following all the steps” approach can be illustrated with an example
from dissimilation. Like Pater’s (1999) articulatory account, the mechanism for
dissimilation starts with a parallel between speech production and formal
phonology. Dissimilation systems exhibit an avoidance of segment repetition and
sequences of similar sounds, and the functional grounding of these sequences
has been supported by research establishing similarity avoidance in language pro-
duction (Shattuck-Hufnagel 1979; Cutler 1980). Thus, the constraints that govern
the Obligatory Contour Principle (OCP) and are commonplace in phonologi-
cal analyses of dissimilation and root cooccurrence restrictions (Goldsmith 1976;
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McCarthy 1986) have a functional motivation in speech production research.
This parallel between the properties of on-line language production and phono-
logical systems is established in some detail in Frisch (1996 et seq.). Frisch (1996)
compared the phonological similarity of English consonant pairs with spreading
activation (the proxy for similarity in Dell’s (1986) model of language produc-
tion), and found that indeed consonant similarity correlated well with activation
values. This correlation supported research that shows how similarity avoidance
in on-line production patterns can influence long-term lexical representations
through talker-listener interactions (Frisch 2004; Martin 2007). In particular,
Martin (2007) sketches an agent-based modeling account of how the mechanisms
that underlie similarity avoidance can exert biases in learning, and result in the
persistence of skewed dissimilatory patterns. While there are alternative func-
tional accounts that focus on perceptual difficulty with segment repetition
(Boersma 1998; Frisch 2004), Frisch’s account is particularly promising in this
regard, and it serves as a model for integrating psycholinguistic grounding with
formal phonological analyses.

This focus on the underlying mechanism and establishing a connection to
phonological analysis has many advantages. First, by linking phonology to an
underlying mechanism, it can be argued that such an analysis provides a genuine
explanation for the existence of a pattern. It answers why questions rather than
just how questions. We also think that focusing on explicit mechanisms leads to
more explicit and testable predictions (e.g. the role of distance in the produc-
tion account of dissimilation (Frisch 2004)). Moreover, by establishing an explicit
link between underlying behavior and phonological patterns, the different steps
in the analysis provide solutions at different levels of analysis. Low-level produc-
tion data can be investigated for the variable patterns that lead to dissimilation,
and the outcomes of agent-based modeling lead to analyses of complete phono-
logical systems. Finally, and perhaps most importantly, a focus on an underlying
mechanism in a sense makes deciding on a particular theoretical model some-
what less important. In the case of dissimilation, once the research has established
that similarity avoidance emerges from constraints on speech production, then
formalization can be developed in a variety of ways, as long as they account for the
central facts. For example, similarity avoidance can be accounted for in a variety
of production models (Dell 1986; Vousden et al. 2000; Smolensky et al. 2014), and
the phonological analysis can be formalized in a connectionist network (Alderete
etal. 2013) or a harmonic grammar (Coetzee & Pater 2008). The choice is not
terribly important if both demonstrably account for the emergence of dissimila-
tion. In other words, once the underlying mechanism has been established, the
formalization question is secondary to implementing a model that approximates
the behavior consistent with that mechanism.
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While model comparison can be a challenge when the assumptions are either
so radically different that they cannot be compared, or so similar that the differ-
ences are trivial, there are cases where model comparison can yield interesting
and insightful findings. For example, Daland et al. (2011) created multiple ver-
sions of different models (e.g. versions that included syllable structure, and ver-
sions without) in order to compare within and across model categories. Their
results quite clearly showed a need for syllable structure. Because computational
models require a host of choices about parameters, it can be helpful to demon-
strate how different choices affect model fit across a variety of models. These
choices can be formal characteristics, as well as more representational choices,
such as syllabification, featural information, or prosody (Hayes & Wilson 2008;
Daland & Pierrehumbert 2011).

Another productive trend involves considering probabilistic patterns from
various levels of analysis and relationships among those levels. Phonological
processes are often most clearly expressed through morphophonological alterna-
tions. As Pierrehumbert (2016) argues, morphophonology may be well-suited to
serve as a model for a hybrid approach, because the purpose of morphophonol-
ogy is to understand the relationship between words within and across paradigms,
but that indexical information (e.g. class, gender) has varying effects on gen-
eralization in different phonological contexts. In this approach, it is not about
comparing models to find “which is best”, but integrating differing factors into
a single model. To our knowledge, no one has yet proposed a hybrid model of
morphophonology that incorporates elements from an exemplar model with ele-
ments from a generative model. While it might be possible to tease apart categori-
cal effects from gradient effects in morphophonology, it is not yet clear what such
a model might look like.

The Integrated Connectionist/Symbolic (ICS) cognitive architecture
(Smolensky 2006; Smolensky & Legendre 2006) and further developments from
that approach (Smolensky et al. 2014) might serve as a blueprint for such a model.
The ICS framework integrates Harmonic Grammar (Legendre et al. 1990) across
levels, and the larger model is meant to serve as a hybrid between connection-
ist and symbolic cognitive architectures. The microlevel operates like a neural
network with distributed representations and spreading activations, while the
macrolevel makes use of symbolic computations. The bridge between these two
levels is harmony, which serves as the well-formedness measure used in Har-
monic Grammar and OT. An architecture that has room for gradient and abstract
levels of representation, with connections in between, may help explain why
phonology requires categorical, abstract representations, in addition to the many
gradient properties discussed in this paper. The ICS framework may also bridge
gaps between psycholinguistic models and generative models. For example, artifi-
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cial neural network models of speech perception (McClelland & Elman 1986) and
speech production (Dell 1986; Dell et al. 1993) allow for connections between dif-
ferent layers of the network (e.g. features at a lower level, phonemes at an inter-
mediate level, and words at a higher level).

An integrated account of the gradient and the abstract would likely involve a
“ladder of abstraction”, where different effects can be accounted for at various lev-
els of abstraction. For example, gradient representations of speech can be influ-
enced by abstract indexation of social class (Munson etal. 2012). A ladder of
abstraction might also make sense when discussing gradient effects in phono-
logical processing. For example, continuous acoustic information at one level of
abstraction could influence more abstract levels of representation, like syllable
structure. Pierrehumbert (2016) argues that many of the gradient and talker-
specific effects appear at the individual word level, while generalizations beyond
known words (e.g. novel morphophonological alternations, wug tests, etc.)
appear to trigger more abstract representations (Finley 2013). This raises impor-
tant questions about the relationship between the lexicon and the grammar (see,
e.g. Myers 2007), in that the lexicon might store many gradient, talker-specific
representations, but an abstract grammar can be applied to novel forms. If these
abstract representations apply probabilistically, then it might explain why some
gradient effects in phonology cannot be reduced to a list of exemplars or formant
values.

6. Conclusion

In the last 25 years, there has been a surge of research exploring the role of prob-
ability in phonological representations. This research, based largely on corpus
analyses and experimental data, has shown consistently that phonological knowl-
edge cannot be represented solely in terms of binary grammaticality judgments.
Rather, speaker knowledge of phonotactics, morphophonology, and prosodic
phonology must have more flexible representations. What these representations
look like, and how they might be learned, are still subject to debate. We have
surveyed several approaches, including lexically-based models such as exemplar
theory, computational approaches that make use of statistical modeling and infor-
mation theory, and constraint-based models such as MaxEnt grammar. These
approaches can be applied to a host of phenomena, including language variation
and change, psycholinguistic data, and language learning and development.
Because probability has become an increasingly integral part of “mainstream”
phonology, it is important to find common ground among the many approaches
to and applications of probabilistic phonology. This paper highlights some of the
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issues related to finding such common ground, including ideological commitment
to particular approaches and applications, as well as differences in the funda-
mental questions related to phonological knowledge. While probability plays an
important role in phonology, there is a risk for research to lose sight of the big
questions in phonology, relating to representation and grammatical knowledge,
in favor of a model with the best fit of a given data set. Future research will ben-
efit from a focus on finding ways to integrate abstract representations with non-
binary representations. We suggest that research is likely to find support for an
integrated approach to probability in phonology, where probability applies differ-
ently at various levels of abstraction.
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